A Model of Microwave Emission from Mouth Regions of Arctic Rivers Providing for Radiometer Pixel Land Contamination
- Authors: Tikhonov V.V.1,2,3, Khvostov I.V.2, Romanov A.N.2, Sharkov E.A.1
-
Affiliations:
- Space Research Institute of the RAS
- Institute for Water and Environmental Problems of the SB RAS
- Arctic and Antarctic Research Institute
- Issue: No 3 (2024)
- Pages: 16-29
- Section: ФИЗИЧЕСКИЕ ОСНОВЫ ИССЛЕДОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА
- URL: https://journals.eco-vector.com/0205-9614/article/view/659128
- DOI: https://doi.org/10.31857/S0205961424030026
- EDN: https://elibrary.ru/FBCWNR
- ID: 659128
Cite item
Full Text
Abstract
The paper presents a model of microwave emission from mouth regions of Arctic rivers taking into account radiometer pixel contamination by land. Modeling of seasonal and interannual dynamics of brightness temperature of different regions of the Yenisei Bay is performed on the example of MIRAS radiometer data from the SMOS satellite. The necessity of considering the coastal zone in brightness temperature modeling in the studied regions is shown. Comparison of the model calculations with SMOS L1C data has shown a good agreement. Analysis of model calculations and satellite data has allowed us to determine the location of the fresh and salt water mixing zone in the Yenisei Bay during the ice period, provided that the model takes into account the coastal zone captured by the radiometer pixel.
About the authors
V. V. Tikhonov
Space Research Institute of the RAS; Institute for Water and Environmental Problems of the SB RAS; Arctic and Antarctic Research Institute
Author for correspondence.
Email: vtikhonov@asp.iki.rssi.ru
Russian Federation, Moscow; Barnaul; Saint Petersburg
I. V. Khvostov
Institute for Water and Environmental Problems of the SB RAS
Email: vtikhonov@asp.iki.rssi.ru
Russian Federation, Barnaul
A. N. Romanov
Institute for Water and Environmental Problems of the SB RAS
Email: vtikhonov@asp.iki.rssi.ru
Russian Federation, Barnaul
E. A. Sharkov
Space Research Institute of the RAS
Email: vtikhonov@asp.iki.rssi.ru
Russian Federation, Moscow
References
- Boyarskii D.A., Romanov A.N., Khvostov I.V., Tikhonov V.V., Sharkov E.A. Otsenka glubiny promerzaniya pochvennogo pokrova po dannym sputnika SMOS [On Evaluating the Depth of Soil Freezing Based on SMOS Satellite Data] // Izvestiya, Atmospheric and Oceanic Physics. 2019. V. 55. No. 9. P. 996–1004. https://doi.org/10.1134/S0001433819090147.
- Bryzgalo V.A., Nikanorov A.M., Kosmenko L.S., Reshetniak O.S. Ust’evye ekosistemy krupnykh rek Rossii: antropogennaia nagruzka i ekologicheskoe sostoianie [Estuary ecosystems of Russia’s major rivers: anthropogenic pressure and ecological status]. Rostov on the Don: SFedU, 2015. 164 p. (In Russian).
- Geograficheskii entsiklopedicheskii slovar’. Geograficheskie nazvaniia [Geographical Encyclopedic Dictionary. Geographic names] / ed. Treshnikov A. F. M.: Soviet Encyclopedia, 1989. 592 p. (In Russian).
- Dolgopolova E.N. Rol’ mnogoletnemerzlykh porod v formirovanii gidrologo-morfologicheskogo rezhima ust’ev rek vodosbora Severnogo Ledovitogo okeana [The role of permafrost in the formation of the hydrological and morphological regime of river mouths in the Arctic Ocean watershed area] // Arctic: ecology and economy. 2018. V. 32. No. 4. P. 55–70. doi: 10.25283/2223-4594-2018-4-70-85. (In Russian).
- Konik A.A., Zimin A.V., Atadzhanova O.A., Pedchenko A.P. Otsenka izmenchivosti kharakteristik Stokovoi frontal’noi zony Karskogo moria na osnove kompleksirovaniia dannykh sputnikovogo distantsionnogo zondirovaniia [Assessment of the variability of the River Plums frontal zone in the Kara Sea on the basis of integration of satellite remote sensing data] // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2021. V. 18. No. 2. P. 241–250. doi: 10.21046/2070-7401-2021-18-2-241-250. (In Russian).
- Lapin S.A. Osobennosti formirovaniia presnovodnogo stoka v estuarnykh sistemakh Obi i Eniseia [Features of freshwater flow formation in estuary systems of the Ob and the Yenisei] // Trudy VNIRO. 2017. V. 156. P. 139–150. (In Russian).
- Romanov A.N., Hvostov I.V., Ulanov P.N., Kovalevskaja N.M., Kirillov V.V., Plutalova T.G., Kobelev V.O., Pechkin A.S., Sinickij A.I., Sysoeva T.G., Hvorova L.A. Kosmicheskij monitoring arkticheskih i subarkticheskih territorij Jamalo-Neneckogo avtonomnogo okruga [Space monitoring of Arctic and subarctic territories of the Yamalo-Nenets Autonomous Okrug]. Barnaul: Five Plus LLC, 2018. 120 p. (In Russian).
- Romanov A.N., Khvostov I.V., Tikhonov V.V., Sharkov E.A. Assessing Hydrological Changes in Wetland Areas of the Russian Arctic, Subarctic, and Northern Taiga Based on Microwave Remote Sensing Data // Izvestiya, Atmospheric and Oceanic Physics. 2022. V. 58. No. 9. P. 1100–1110. doi: 10.1134/S0001433822090201.
- Romanov A.N., Khvostov I.V., Ryabinin I.V., Tikhonov V.V., Shaduyko O.M. Svjaz’ sezonnyh variacij radiojarkostnyh temperatur akvatorii Karskogo morja s gidrologo-klimaticheskimi izmenenijami v Arktike [Relationship between seasonal variations in radio-brightness temperatures in the Kara Sea area and hydrological-climate changes in the Arctic] // Izvestiya vuzov. Fizika. 2023. № 4. P. 34–47. doi: 10.17223/00213411/66/4/4.
- Sneg: spravochnik [Handbook of Snow] / ed. Gray D.M., Male D.H. New Jersey: The Blackburn Press. 1981. 776 p.
- Tikhonov V.V., Khvostov I.V., Romanov A.N., Sharkov E.A., Boyarskii D.A., Komarova N.Yu., Sinitskiy A.I. Features of the Intrinsic L-Band Radiation of the Gulf of Ob during the Freeze-Up Period // Izvestiya, Atmospheric and Oceanic Physics. 2020. V. 56. No. 9. P. 936–949. https://doi.org/10.1134/S0001433820090236.
- Tikhonov V.V., Khvostov I.V., Romanov A.N., Alekseeva T.A., Sinitskiy A.I., Tikhonova M.V., Sharkov E.A., Komarova N.Yu. Mezhgodovye variatsii sobstvennogo mikrovolnovogo izlucheniia Obskoi guby v period ledostava i ikh sviaz’ s gidrologicheskimi i klimaticheskimi izmeneniiami regiona [Interannual variation of microwave radiation of the Gulf of Ob during the freezing season and relationship to hydrological and climate changes in the region] // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2021. V. 18. No. 6. P. 185–199. doi: 10.21046/2070-7401-2021-18-6-185-199. (In Russian).
- Tikhonov V.V., Khvostov I.V., Alekseeva T.A., Romanov A.N., Afanasyeva E.V., Sokolova J.V., Sharkov E.A., Boyarskii D.A., Komarova N.Yu. Analysis of the Winter Hydrological Regime of the Yenisei, Pechora, and Khatanga Estuaries Using SMOS Data // Izvestiya, Atmospheric and Oceanic Physics. 2022. V. 58. No. 12. P. 1519–1531. doi: 10.1134/S0001433822120234.
- Sharkov E.A. Passive Microwave Remote Sensing of the Earth: Physical Foundations. Berlin: Springer/PRAXIS, 2003. 613 p.
- Crabeck O., Galley R., Delille B., Else B., Geilfus N.-X., Lemes M., Roches M.D., Francus P., Tison J.-L., Rysgaard S. Imaging air volume fraction in sea ice using non-destructive X-ray tomography // The Cryosphere. 2016. V. 10. No. 3. P. 1125–1145. doi: 10.5194/tc-10-1125-2016.
- Demir O., Johnson J.T., Jezek K.C., Andrews M.J., Ayotte K., Spreen G., Hendricks S., Kaleschke L., Oggier M., Granskog M.A., Fong A., Hoppmann M., Matero I., Scholz D. Measurements of 540–1740 MHz Brightness Temperatures of Sea Ice During the Winter of the MOSAiC Campaign // IEEE Transactions on Geoscience and Remote Sensing. 2022. V. 60. Article 5302011. 11 p. doi: 10.1109/TGRS.2021.3105360.
- Emery W., Camps A. Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Land and Cryosphere Application. Amsterdam, Netherlands; Cambridge, MA: Elsevier Inc. 2017. 856 p.
- Encyclopedia of Snow, Ice and Glaciers / eds. Singh V.P., Singh P., Haritashya U.K. Dordrecht: Springer, 2011. 1253 p.
- Frantz C.M., Light B., Farley S.M., Carpenter S., Lieblappen R., Courville Z., Orellana M.V., Junge K. Physical and optical characteristics of heavily melted “rotten” Arctic sea ice // The Cryosphere. 2019. V. 13. No. 3. P. 775–793. doi: 10.5194/tc-13-775-2019.
- Gutierrez A., Castro R., Vieira P., Lopes G., Barbosa J. SMOS L1 Processor L1c Data Processing Model. DEIMOS Engenharia. Lisboa, Portugal. 2017. https://earth.esa.int/eogateway/documents/20142/37627/SMOS-L1c-Data-Processing-Models.pdf.
- Kerr Y.H., Waldteufel P., Wigneron J.-P., Delwart S., Cabot F., Boutin J., Escorihuela M.J., Font J., Reul N., Gruhier C., Juglea S.E., Drinkwater M.R., Hahne A., Martin-Neira M., Mecklenburg S. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle // Proc. IEEE. 2010. V. 98. No. 5. P. 666–687. doi: 10.1109/JPROC.2010.2043032.
- Lepparanta M. Freezing of Lakes and the Evolution of their Ice Cover. Cham: Springer Nature Switzerland AG, 2023. 361 p. https://doi.org/10.1007/978-3-031-25605-9.
- Matzler C. Passive Microwave Signatures of Landscapes in Winter // Meteorology and Atmospheric Physics. 1994. V. 54. P. 241–260. https://doi.org/10.1007/BF01030063.
- McMullan K.D., Brown M.A., Martín-Neira M., Rits W., Ekholm S., Marti J., Lemanczyk J. SMOS: The payload // IEEE Trans. Geoscience and Remote Sensing. 2008. V. 46. No. 3. P. 594–605. doi: 10.1109/TGRS.2007.914809.
- Oliva R., Martín-Neira M., Corbella I., Closa J., Zurita A., Cabot F., Khazaal A., Richaume P., Kainulainen J., Barbosa J., Lopes G., Tenerelli J., Díez-García R., González–Gambau V., Crapolicchi R. SMOS Third Mission Reprocessing after 10 Years in Orbit // Remote Sensing. 2020. V. 10. № 12. P. 1645. 24 p. https://doi.org/10.3390/rs12101645.
- Petrich C., Eicken H. Growth, Structure and Properties of Sea Ice // Sea Ice / eds. Thomas D.N., Dieckmann G.S. Chichester: Blackwell Publishing Ltd, 2010. P. 23–77.
- Ran Y., Li X., Cheng G., Che J., Juha A., Olli K., Jan H., Miska L., Jin H., Jaroslav O., Masahiro H., Yu Q., Chang X. New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere // Earth System Science Data. 2022. V. 14. P. 865–884. https://doi.org/10.5194/essd-14-865-2022.
- Sahr K., White D., Kimerling A.J. Geodesic Discrete Global Grid System // Cartography and Geographic Information Science. 2003. V. 30. No. 2. P. 121–134. doi: 10.1559/152304003100011090.
- Tikhonov V., Khvostov I., Romanov A., Sharkov E. Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data // The Cryosphere. 2018. V. 12. No. 8. P. 2727–2740. https://doi.org/10.5194/tc-12-2727-2018.
- Tikhonov V.V., Romanov A.N., Khvostov I.V., Alekseeva T.A., Sinitskiy A.I., Tikhonova M.V., Sharkov E.A., Komarova N.Yu. Analysis of the hydrological regime of the Gulf of Ob in the freezing period using SMOS data // Rossiiskaya Arktika [Russian Arctic]. 2022. No. 2(17). P. 44–71. doi: 10.24412/2658-4255-2022-2-44-71.
- Timco G.W., Frederking R.M.W. A review of sea ice density // Cold Regions Science and Technology. 1996. V. 24. No. 1. P. 1–6. https://doi.org/10.1016/0165-232X(95)00007-X.
- Ulaby F.T., Long D.G. Microwave Radar and Radiometric Remote Sensing. Ann Arbor, Michigan: Univ. of Michigan Press, 2014. 984 p.
- Zwally H.J., Comiso J.C., Parkinson C.L., Campbell W.J., Carsey F.D., Gloersen P. Antarctic Sea Ice 1973-1976 from Satellite Passive-Microwave Observations. NASA Spec. Publ. Ser. 459. 1983. 206 p.
Supplementary files
