Structure of water during the feeding migration period of the Pacific squid in the Sea of Japan according to satellite data

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

According to the sea surface temperature archive for 2018-2023, reconstructed from satellite data AQUA, TERRA (MODIS spectroradiometer), with a spatial resolution of 1 km, obtained and processed at the Center for Collective Use of the Regional Satellite Monitoring of the Environment, Far Eastern Branch of the Russian Academy of Sciences, thermal and dynamic water conditions in the northwestern part of the Sea of Japan and the areas of longline (jigger) fishing for Pacific squid in the Sea of Japan are considered. Analysis of satellite materials made it possible to identify hydrological elements of the thermal structure in the field of the spatial distribution of ocean surface temperature, in which Pacific squid fishing was successfully carried out. First of all, the formation of TC fishing areas depends on the development or weakening of the branches of the Tsushima and Primorsky currents, and the presence of mesoscale eddy structures in their waters. In most cases, TC accumulations are confined to areas of eddy upwelling. Maximum catches are concentrated on the periphery of subtropical anticyclonic eddies bordering subarctic waters. If the eddy had a spiral structure, then the clusters are mainly concentrated in the center of the eddy. If the influx of subtropical waters took the form of a mushroom-shaped current, then large catches were mainly observed in the current jet and in the zone of anticyclonic and cyclonic eddy of the dipole. In the frontal zone of subtropical and subarctic waters, squid fishing areas were located on the warm side of the Subarctic (Polar) front.

Full Text

Restricted Access

About the authors

А. А. Nikitin

Pacific Branch of VNIRO (TINRO)

Author for correspondence.
Email: aleksandr.nikitin@tinro.vniro.ru
Russian Federation, Vladivostok

I. L. Tsypysheva

Pacific Branch of VNIRO (TINRO)

Email: aleksandr.nikitin@tinro.vniro.ru
Russian Federation, Vladivostok

N. M. Mokrin

Pacific Branch of VNIRO (TINRO)

Email: aleksandr.nikitin@tinro.vniro.ru
Russian Federation, Vladivostok

References

  1. Aleksanin A.I., Aleksanina M.G. Monitoring termicheskih struktur poverhnosti okeana po dannym IK-kanala sputnikov NOAA na primere Prikuril’skogo rajona Tihogo okeana // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. Fizicheskie osnovy, metody i tekhnologii monitoringa okruzhayushchej sredy, potencial’no opasnyh yavlenij i ob”ektov. Vyp. 3. Tom II. Moskva, OOO “Azbuka-2000”. 2006. C. 9‒15. (In Russian).
  2. Belonenko T.V., Kozub P.K. Vihrevoj apvelling kak mekhanizm sozdaniya blagopriyatnyh uslovij skoplenij sajry v Yuzhno-Kuril’skom rajone // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, 2018. T. 15. № 1. S. 221‒232.
  3. Bulatov N.V., Samko E.V., Cypysheva I.L. Okeanologicheskie obrazovaniya, blagopriyatnye dlya koncentracii pelagicheskih ryb po infrakrasnym dannym ISZ NOAA / Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2008. T. 2. № 2. S. 49‒61. (In Russian).
  4. Ginzburg A.I., Kostyanoj A.G., Ostrovskij A.G. Poverhnostnaya cirkulyaciya YAponskogo morya (sputnikovaya informaciya i dannye drejfuyushchih buyov) // Issledovaniya Zemli iz kosmosa. 1998. № 1. S. 66‒83. (In Russian).
  5. D’yakov B.S. Vliyanie cirkulyacii vod na prostranstvennoe raspredelenie promys¬lovyh skoplenij tihookeanskogo kal’mara v YAponskom more // Izv. TINRO. 2003. T. 134. S. 258‒265. (In Russian).
  6. Mokrin N.M., Slobodskoj E.V. Rukovodstvo po poisku i promyslu pelagicheskih kal’marov v YAponskom more i Yuzhno-Kuril’skom rajone. Vladivostok. TINRO-centr. 1998. 61 s. (In Russian).
  7. Mokrin N.M., Hen G.V. Okeanologicheskie osnovy raspredeleniya, migracii i dinamiki chislennosti tihookeanskogo kal’mara // Gidrometeorologiya i gidrohimiya morej: T. VIII. Yaponskoe more. Vyp. 2. SPb.: Gidrometeoizdat. 2004. S. 248‒255. (In Russian).
  8. Nikitin A.A. Osnovnye cherty prostranstvennogo raspredeleniya frontov v vodah Yaponskogo morya i ih izmenchivost’ // Issledovaniya Zemli iz kosmosa. 2006. № 5. S. 49‒62. (In Russian).
  9. Nikitin A.A., Yurasov G.I. Sinopticheskie vihri YAponskogo morya po sputnikovym dannym // Issledovanie Zemli iz kosmosa. 2008. № 5. S. 1‒16. (In Russian).
  10. Nikitin A.A., Danchenkov M.A., Lobanov V.B. Puti perenosa subtropicheskih vod v rajon Dal’nevostochnogo Morskogo zapovednika. / V kn.: Dal’nevostochnyj morskoj biosfernyj zapovednik. Issledovaniya. Kollektivnaya monografiya. Otv. red. A.N. Tyurin. T. 1. Vladivostok. Dal’nauka. 2004. Glava V. Gidrologiya i meteorologiya rajona zapovednika. 2004. S. 314‒319. (In Russian).
  11. Novikov Yu.V., Slobodskoj E.V., Shevcov G.A. Vliyanie okeanologicheskih uslovij na raspredelenie i biologicheskie osobennosti massovyh vidov kal’marov v Yuzhno-Kuril’skom rajone // Okeanologiya. Morskaya biologiya. 2007. T. 47. № 2. S. 259‒265. (In Russian).
  12. Savinyh V.F., Shevcov G.A., Karyakin K.A. Slobodskoj E.V., Novikov Yu.V. Mezhgodovaya izmenchivost’ migracij nektonnyh ryb i kal’marov v tihookeanskie vody yuzhnyh Kuril’skih ostrovov // Voprosy ihtiologii. T. 43. № 6. 2003. S. 759‒771. (In Russian).
  13. Samko E.V., Bulatov N.V. Issledovanie svyazi polozheniya ringov Kurosio s teplym yadrom i raspredeleniya promysla sajry po sputnikovym dannym // Issledovaniya Zemli iz kosmosa. № 2. 2014. S. 18‒26. (In Russian).
  14. Fedorov K.N., Ginzburg A.I. Pripoverhnostnyj sloj okeana // Leningrad, Gidrometeoizdat. 1988. 303 s. (In Russian).
  15. Shuntov V.P. Biologiya dal’nevostochnyh morej Rossii. Vladivostok: TINRO-Centr. T. 2. 2016. 604 s. (In Russian).
  16. Gong Y., Jeong H.D., Suh Y.S., Park J.H., Seong K.T., Kim S.W., Choi K.H., an I.S. Fluctuation of Pelagic Fish Populations in Relation to the Climate Shifts in the Far-East Region // J. Ecol. Field Biol. 2007. № 30 (1). R. 23‒38.
  17. Kasahara S. Descriptions of offshore squid angling in the Sea of Japan, with special reference to the distribution of common squid (Todarodes pacificus Steenstrup); and on the techniques for forecasting fishing conditions // Bull. Jap. Sea Reg. Fish. Res. Lab. 1978. Vol. 29. P. 179‒199.
  18. Kidokoro H., Goto T., Nagasawa T., Nishida H., Akamine T., and Sakurai Y. 2010. Impact of a climate regime shift on the migration of Japanese common squid (Todarodes pacificus) in the Sea of Japan. – ICES Journal of Marine Science, 67: 1314–1322.
  19. Mokrin N.M., Novikov Yu.V., Zuenko Yu.I. Seasonal Migrations and oceanographic conditions for concentration of rhe Japanese flying squid (todarodes pacificus steenstrup, 1980) in the northwestern Japan Sea. Bulletin of marine science. 2002. V. 71(1). P. 487‒499.
  20. Sakurai Y., Kidokoro H., Yamashita N., Yamamoto J., Uchikawa K., Takahara H. Todarodes pacificus, Japanese common squid // Rosa R. Pierce G. O’Dor R. (ads.). Advances in squid biology, ecology and fisheries. Pt. 2: Oegopsid squids. New York: Nova Science Publishers. 2013. R. 250‒270.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of the Pacific squid in the northwestern Pacific Ocean: a – basis of the range, b – breeding area, migration routes of the Pacific squid in the Sea of ​​Japan in the spring-summer (c) and autumn (d) periods (according to Kasahara, 1978).

Download (327KB)
3. Fig. 2. Spatial distribution of water surface temperature (a) and its anomalies (b) on 16.08.2019 (URL: http://marine.copernicus.eu/services-portfolio/access-to-products/) and water temperature distribution in July-August (c) on meridional sections at 132 E (P.1), 135 E (P.2), 138 E (P.3), 141 E (P.4) and on zonal sections at 42 N (P.5) and 47 N (P.6).

Download (1MB)
4. Fig. 3. Spatial distribution of sea surface temperature and Pacific squid fishing grounds (left) (URL: http://marine.copernicus.eu/services-portfolio/access-to-products) and a schematic map of the thermal structure of waters based on satellite observations with squid fishing grounds in the Sea of ​​Japan (right). Legend: A – anticyclonic eddy;  – TC catch areas;  – locations of maximum catches (t).

Download (715KB)
5. Fig. 4. Fragment of the spatial distribution of sea surface temperature reconstructed from MODIS/Terra satellite data for 09/19/2020 12:38 UTC (a), fragment of a schematic map constructed based on the results of interpreting a satellite image for 09/19/2020 (b); spatial distribution of sea surface temperature (c) and chlorophyll-a (d) for 04/20/2021 03:36 UTC (MODIS/Aqua).

Download (1MB)
6. Fig. 5. Maps-schemes of the thermal structure of waters, constructed based on satellite observations with squid fishing areas in the Sea of ​​Japan for August-October 2018. Legend: A – anticyclonic eddy;  – TC catches (t);  – places with maximum catches (t).

Download (817KB)
7. Fig. 6. Maps-schemes of the thermal structure of waters, constructed based on satellite observations with squid fishing areas in the Sea of ​​Japan for August-October 2019. Legend: see Fig. 5.

Download (965KB)
8. Fig. 7. Schematic maps of the thermal structure of waters, constructed based on satellite observations with squid fishing areas in the Sea of ​​Japan for August-October 2020. Legend: see Fig. 5.

Download (845KB)
9. Fig. 8. Schematic maps of the thermal structure of waters, constructed based on satellite observations and with squid fishing areas in the Sea of ​​Japan for July-October 2021. Legend: (see Fig. 5).

Download (714KB)
10. Fig. 9. Maps-schemes of the thermal structure of waters, constructed based on satellite observations with squid fishing areas in the Sea of ​​Japan for July-August 2022. Legend: (see Fig. 5).

Download (652KB)
11. Fig. 10. Maps-schemes of the thermal structure of waters, constructed based on satellite observations with squid fishing areas in the Sea of ​​Japan for July-September 2023. Legend: (see Fig. 5).

Download (448KB)
12. Fig. 11. Maps-schemes of the thermal structure of waters, constructed based on satellite observations with squid fishing areas in the Sea of ​​Japan in September 2018-2023. Legend: (see Fig. 5).

Download (932KB)

Copyright (c) 2025 Russian academy of sciences