Magnetic cleanliness of CubeSat 1U satellites for measuring Earth’s magnetic field

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The work is devoted to the analysis of the possibility of implementing measurements of the Earth's magnetic field on board small spacecraft of the CubeSat 1U format. In particular, the problem of ensuring magnetic purity for the operation of magnetometers as part of nanosatellites was solved. The required accuracy of the equipment was estimated and the recommended maximum level of the spacecraft's residual magnetic field was determined – 0.1 nT. Ensuring the required value of the background of the magnetic field is possible only if the platform and the magnetometer are spaced apart - due to a special boom. To estimate its minimum length, the simulation of the magnetic field of the nanosatellite was carried out. The resulting value was 1250 cm.

Texto integral

Acesso é fechado

Sobre autores

A. Reva

Space Research Institute RAS

Autor responsável pela correspondência
Email: kirichenko@cosmos.ru
Rússia, Moscow

S. Bogachev

Space Research Institute RAS

Email: kirichenko@cosmos.ru
Rússia, Moscow

A. Kirichenko

Space Research Institute RAS

Email: kirichenko@cosmos.ru
Rússia, Moscow

I. Loboda

Space Research Institute RAS

Email: kirichenko@cosmos.ru
Rússia, Moscow

Bibliografia

  1. Abramova D.Yu., Filippov S.V., Abramova L.M. About possibilities of satellite observations application to the Earth geological-tectonic structure study // Issledovanie Zemli iz kosmosa. 2020. № 2. p. 69–81. (in Russian). doi : 10.31857/S0205961420010029.
  2. Alpert Ya.L., Gurevich A.V., Pitaevskiy L.P. Artificial satellites in low-density plasma. Moscow : Nauka, 1964. 382 p. (in Russian).
  3. Kopytenko Y.A., Petrova A.A., Aleksseev V.F., Gur’ev I.S., Labetskiy P.V. Application of altitude models of Earth’s magnetic field for solving geophysical problems // Kosmicheskie issledovaniya. 2019. T. 57. № 3, P. 185–191. (in Russian). doi : 10.1134/S0023420619030063.
  4. Ovchinnikov M.Yu., Penkov V.I., Roldugin D.S., Ivanov D.S. Magnetic orientation systems for small spacecrafts. Moscow: IPM im. M. V. Keldysha, 2016. 366 p. (in Russian). doi: 10.20948/mono-2016-ovchinnikov.
  5. Balogh A. Planetary Magnetic Field Measurements: Missions and Instrumentation // Space Sci Rev. 2010. V. 152. p. 23–97. doi: 10.1007/s11214-010-9643-1.
  6. Behannon K.W., Acuna M.H., Burlaga L.F., Lepping R.P., Ness N.F., Neubauer F.M. Magnetic Field Experiment for Voyagers 1 and 2 // Space Science Reviews. 1977. V. 21. iss. 3. p. 235–257. doi: 10.1007/BF00211541.
  7. Cain J.C., Sweeney R.E. The POGO data // J. Atmos. Sol. Terr. Phys. 1973. Vol. 35. p. 1232–1247. doi: 10.1016/0021-9169(73)90021-4
  8. Denton M.H., Borovsky J.E., Stepanova M., Valdivia J.A. Unsolved problems of magnetospheric physics // J Geophys Res. 2016. V. 121. no. 11. p. 10783–10785. doi: 10.1002/2016JA023362.
  9. Glassmeier K., Boehnhardt H., Koschny D., Kührt E., Richter I. The Rosetta Mission: Flying Towards the Origin of the Solar System // Space Science Reviews. 2007. V. 128. iss. 1–4. p. 1–21. doi: 10.1007/s11214-006-9140-8.
  10. Hulot G., Leger J.-M., Clausen L. B.N., Deconinck F., Coïsson P., Vigneron P., Alken P., Chulliat A., Finlay Ch.C., Grayver A., Kuvschinov A., Olsen N., Thébault E., Bertrand F., Jager T., Häfner T. NanoMagSat, a 16U nanosatellite constellation high-precision magnetic project to initiate permanent low-cost monitoring of the Earth’s magnetic field and ionospheric environment // EGU General Assembly. 19–30 Apr 2021, EGU21–14660. doi: 10.5194/egusphere-egu21-14660.
  11. Hulot G., Finlay C.C., Constable C.G., Olsen N., Mandea M. The Magnetic Field of Planet Earth // Space Sci Rev. 2010. V. 152. p. 159–222. doi: 10.1007/s11214-010-9644-0.
  12. Langel R., Ousley G., Berbert J., Murphy J., Settle M. The MAGSAT mission // Geophysical Research Letters. 1982. Vol. 9. iss. 4. p. 243–245. doi: 10.1029/GL009i004p00243.
  13. Olsen N., Holme R., Hulot G., Sabaka T., Neubert T., Tøffner-Clausen L., Primdahl F., Jørgensen J., Leger J.-M., Barraclough D., Bloxham J., Cain J., Constable C., Golovkov V., Jackson A., Kotze P., Langlais B., Macmillan S., Mandea M., Merayo J., Newitt L., Purucker M., Risbo T., Stampe M., Thomson A., Voorhies C. Ørsted Initial Field Model // Geophysical Research Letters. 2000. V. 27. iss. 22. p. 3607–3610. doi: 10.1029/2000GL011930.
  14. Piessens R., de Doncker-Kapenga E., Überhuber Ch.W., Kahaner D. QUADPACK: A subroutine package for automatic integration. Springer-Verlag. ISBN978-3-540-12553-2. 1983. doi: 10.1007/978-3-642-61786-7.
  15. Sutcliffe P.R., Ndiitwani D.C., Luhr H., Heilig B. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review // Data Sci. J. 2011. V. 10, IAGA10-IAGA18. doi: 10.2481/dsj.IAGA-03.
  16. Svedhema H., Titov D.V., McCoy D., Lebreton J.-P., Barabash S., Bertauxd J.-L., Drossarte P., Formisano V., Häusler B., Korablev O., Markiewicz W.J., Nevejans D., Pätzold M., Piccioni G., Zhang T.L., Taylor F.W., Lellouch E., Koschny D., Witasse O., Eggel H., Warhaut M., Accomazzo A., Rodriguez-Canabal J., Fabrega J., Schirmann T., Clochet A., Coradini M. Venus Express – The first European mission to Venus // Planetary and Space Science. 2007. V. 55. iss. 12. p. 1636–1652. doi: 10.1016/j.pss.2007.01.013.
  17. ZhongYi Chu, YiAn Lei. Design theory and dynamic analysis of a deployable boom // Mechanism and Machine Theory. 2014. V. 71. p. 126–141. doi: 10.1016/j.mechmachtheory.2013.09.009.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Directions of currents of the circuits considered in the device. The circuit corresponding to the electronics board is shown in green. Connecting wires are shown in blue. Solar panels are shown in orange.

Baixar (625KB)
3. Fig. 2. Directions of currents in the electronics unit circuit. The green circuit shows the circuit corresponding to the control board. The red circuit shows the power board, which includes the battery.

Baixar (147KB)
4. Fig. 3. The level of the spacecraft's own magnetic field depending on the distance for cases of solar illumination of one (upper panel), two (middle panel) and three (lower panel) solar batteries. The dashed line on the lower panel shows the level of the own magnetic field generated separately by the power board in the maximum output current mode. The dashed line on the lower panel shows the maximum level of the own magnetic field when all the units of the spacecraft are functioning.

Baixar (272KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024