Determination of the Electron Temperature of Shock-Heated Air from the Measured Radiation Intensities
- 作者: Bykova N.G.1, Zabelinskii I.E.1, Kozlov P.V.1, Gerasimov G.Y.1, Levashov V.Y.1
-
隶属关系:
- Institute of Mechanics, Moscow State University
- 期: 卷 42, 编号 4 (2023)
- 页面: 64-72
- 栏目: Combustion, explosion and shock waves
- URL: https://journals.eco-vector.com/0207-401X/article/view/674880
- DOI: https://doi.org/10.31857/S0207401X23040040
- EDN: https://elibrary.ru/MVTAZT
- ID: 674880
如何引用文章
详细
The results of the radiation characteristics of shock-heated air measurements in the vacuum-ultraviolet region are presented. The experiments are carried out in the STS shock tube of the Institute of Mechanics, Moscow State University at shock-wave velocities of 7.3 to 10.7 km/s and initial pressures in the low-pressure chamber of 0.125, 0.2, and 0.25 Torr. An analytical model of the radiation process is constructed, which takes into account the absorption of radiation during its passage through the air . Processing the experimental dependences of the radiation intensity on time for the main radiation lines using this model made it possible to propose a radiation method for determining the electron temperature of a shock-heated gas. The presented data are compared with the experimental data of other authors.
作者简介
N. Bykova
Institute of Mechanics, Moscow State University
Email: vyl69@mail.ru
Moscow, Russia
I. Zabelinskii
Institute of Mechanics, Moscow State University
Email: vyl69@mail.ru
Moscow, Russia
P. Kozlov
Institute of Mechanics, Moscow State University
Email: vyl69@mail.ru
Moscow, Russia
G. Gerasimov
Institute of Mechanics, Moscow State University
Email: vyl69@mail.ru
Moscow, Russia
V. Levashov
Institute of Mechanics, Moscow State University
编辑信件的主要联系方式.
Email: vyl69@mail.ru
Moscow, Russia
参考
- Uyanna O., Najafi H. // Acta Astronaut. 2020. V. 176. P. 341.
- Reyner P. // Prog. Aerospace Sci. 2016. V. 85. P. 1.
- Gu S., Olivier H. // Prog. Aerospace Sci. 2020. V. 113. № 100 607.
- Kotov M.A., Kryukov I.A., Ruleva L.B., Solodovnikov S.I., Surzhikov S.T. // AIAA Paper. 2016. № 2016-0312.
- Balakalyani G., Jagadeesh G. // Measurement. 2019. V. 136. P. 636.
- Dufrene A., MacLean M., Parker R., Holden M. // AIAA Paper. 2011. № 2011-626.
- Герасимов Г.Я., Козлов П.В., Забелинский И.Е., Быкова Н.Г., Левашов В.Ю. // Хим. физика. 2022. Т. 41. № 8. С. 17.
- Суржиков С.Т. // Теплофизика высоких температур. 2016. Т. 54. № 2. С. 249.
- Beyer J., Pfeiffer M., Fasoulas S. // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 280. № 108083.
- Kim J.G., Jo S.M. // Intern. J. Heat Mass Transfer. 2021. V. 169. № 120950.
- Shang J.S., Surzhikov S.T. // Prog. Aerospace Sci. 2012. V. 53. P. 46.
- Oyama K.I. // J. Astronomy Space Sci. 2015. V. 32. P. 167.
- Jiang S.-B., Yeh T.-L., Liu J.-Y. et al. // Adv. Space Res. 2020. V. 66. P. 148.
- Nomura S., Kawakami T., Fujita K. // J. Thermophys. Heat Trans. 2021. V. 35. P. 518.
- Roettgen A., Petrischev V., Adamovich I.V., Lempert W.R. // AIAA Paper. 2015. № 2015-1829.
- Быкова Н.Г., Забелинский И.Е., Ибрагимова Л.Б. и др. // Хим. физика. 2018. Т. 37. № 2. С. 35.
- Козлов П.В., Забелинский И.Е., Быкова Н.Г., Акимов Ю.В., Левашов В.Ю., Герасимов Г.Я., Тереза А.М. // Хим. физика. 2022. Т. 41. № 9. С. 26.
- Лебедева В.В. Техника оптической спектроскопии. М.: Изд-во МГУ, 1986.
- Nordebo S. // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 270. № 107715.
- Методы исследования плазмы / Под ред. Лохте-Хольтгревена В. М.: Мир, 1971.
- Суржиков С.Т. Оптические свойства газов и плазмы. М.: Изд-во МГТУ, 2004.
- Грим Г. Уширение спектральных линий в плазме. М.: Мир, 1978.
- Сивухин Д.В. Общий курс физики. Т. 4. Оптика. М.: Физматлит, 2021.
- NIST Atomic Spectra Database. Ver. 5.9. Gaithersburg: NIST, 2021; https://doi.org/10.18434/T4W30F
- Dikalyuk A.S., Kozlov P.V., Romanenko Y.V., Shatalov O.P., Surzhikov S.T. // AIAA Paper. 2013. № 2013-2505.
- Горелов В.А., Киреев А.Ю. // ПМТФ. 2016. Т. 57. № 1. С. 176.
- Gorelov V.A., Kildushova L.A., Kireev A.Yu. // AIAA Paper. 1994. № 94-2051.
补充文件
