Colloidal-graphite suspension based on thermally expanded graphite
- Authors: Gorshenev V.N.1
-
Affiliations:
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences
- Issue: Vol 43, No 5 (2024)
- Pages: 93-99
- Section: ХИМИЧЕСКАЯ ФИЗИКА НАНОМАТЕРИАЛОВ
- URL: https://journals.eco-vector.com/0207-401X/article/view/674952
- DOI: https://doi.org/10.31857/S0207401X24050114
- ID: 674952
Cite item
Abstract
Currently, modified oxidized (intercalated) graphites and thermally expanded graphites obtained from them are used in solving many applied problems. This is due to the fact that while retaining all the properties of layered graphite compounds, split graphite particles have important new properties, such as ease of molding, low bulk density, and active interaction with the polymer matrix. However, the question of the mechanisms of expansion of oxidized graphite and the properties of thermally expanded graphite particles split into layers has not been sufficiently studied. The establishment of experimental patterns of expansion processes of graphite oxidized by acids contributes to the understanding of the set of stages of complex processes occurring during the expansion of graphite particles in a gas atmosphere and in polymer matrices. The purpose of the work was to synthesize a colloidal-graphite suspension based on thermally expanded graphite particles, to study the properties of suspensions and expansion processes of oxidized graphite during thermal and microwave heating. As a result of modifying thermally expanded graphite with low bulk density in activating media, colloidal graphite suspensions are synthesized without a vibration grinding stage. The splitting of graphite materials after chemical modification by thermal and microwave-stimulated heating leads to the formation of graphene-like structures. The development of techniques for modifying electrically conductive porous samples of materials used as electrodes makes it possible to introduce nanographite particles under the influence of an electric field.
Full Text

About the authors
V. N. Gorshenev
Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: gor@sky.chph.ras.ru
Russian Federation, Moscow
References
- Ubbelode A.R., Lewis F.A. Graphite and its crystalline compounds. Oxford: Clarendon Press, 1960.
- Chung D.D.L. // J. Mater. Sci. 2004. V. 39. P. 2645. https://doi.org 10.1023/B:JMSC.0000021439.18202.ea
- Dresselhaus M.S., Dresselhaus G. // Adv. Phys. 2002. V. 51. P. 1. https://doi.org 10.1080/00018730110113644
- Lozovik Yu.E., Popov A.M. // UFN. 1997. V. 167(7). P. 751.
- Sorokina N.E., Avdeev V.V., Tikhomirov A.S., Lutfullin M.A., Saidaminov M.I. // Composite nanomaterials based on intercalated graphite. Textbook for students majoring in “Composite nanomaterials” [in Russan]. Moscow: Izd. Mos. Gos. Univ., 2010. P. 50.
- Novoselov K.S., Geim A.K., Morozov S.V. et al. // Science. 2004. V. 306. № 5696. P. 666. https://doi.org 10.1126/science.1102896
- Stankovich S., Dikin D.A., Dommett G.H.B. et al. // Nature. 2006. V. 442. № 7100. P. 282.
- Graifer E.D., Makotchenko V.G., Nazarov A.S., Kim S.-J., Fedorov V.E. // Advances in Chemistry. 2011. V. 80(8). P. 784.
- Soldano С., Mahmood A., DujardinЕ. // Carbon. 2010. V. 48 № 8. P. 2127.
- Singh V., Joung D., Zhai L. et al. // Prog. Mater. Sci. 2011. V. 56. P. 1178.
- Fialkov A.S. Carbon interlayer compounds and composites based on them. Moscow: Aspect-Press, 1997 [in Russian].
- Hummers W.S. Pat. USA 2798878, 1957.
- Hummers W.S., Offman R.E. // J. Amer. Chem. Soc. 1958. V. 80. P. 1339.
- Toporov G.N., Semenov M.V., Eliseeva R.A., Khachaturyan T.K., Tatarenko V.A. // Colloid. log. 1978. V. 3. P. 575.
- Fialkov A.S., Toporov G.N., Chekanova V.D. // Journal of Physics. Chemistry. 1963. V. XXXVII(3). P. 566.
- Redinder P.A. // Colloid graphite: Collection of articles. Moscow: Institute of Applied Mineralogy, 1932. P. 87 [in Russian].
- Kulmetyeva V.B., Ponosova A.A. // Modern Problems of Science and Education. 2015. V. 2(2). P. 11.
- Gorshenev V.N., Bibikov S.B., Kuznetsov A.M. // Journal of Applied Chemistry. 2008. V. 81(3). P. 442.
- Kulikovsky E.I., Orlov V.V., Bibikov S.B., Gorshenev V.N. Ultra wide range radio absorbing device: RF Patent 2253927 // 2005. № 16.
- Gatin A.K., Grishin M.V., Prostnev A.S., Sarvady S.Yu., Stepanov I.G., Kharitonov V.A., Shub B.R. // Russ. J. Phys. Chem. B. 2022. V. 16(3). P. 468. https:// doi.org/10.31857/S0207401X22050041
- Kucherenko M.G., Neyasov P.P., Kruchinin N.Yu. // Russ. J. Phys. Chem. B. 2023. V. 17(3). P. 745. https:// doi.org/10.31857/S0207401X23050059
- Zhukov A.M., Solodilov V.I., Tretyakov I.V., Burakova E.A., Yurkov G.Yu. // Russ. J. Phys. Chem. B. 2022. V. 16(5). P. 926. https:// doi.org/10.31857/S0207401X22090138
- Bodneva V.L., Kozhushner M.A., Lidsky B.V., Posvyansky V.S., Trakhtenberg L.I. // Russ. J. Phys. Chem. B. 2023. V. 17(4). P. 783. https:// doi.org/10.31857/S0207401X2307004X
Supplementary files
