Kinetics of thermal decomposition of methyl derivatives of 7H-difurazanofuxanoazepine and 7H-tryfurasanoazepine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The thermal stability of N-methyl derivatives of 7H-difurasanofuroxanoazepine and 7H-trifurazanoazepine in non-isothermal and isothermal modes has been studied. Formal-kinetic regularities of decomposition and temperature dependences of reaction rate constants have been determined. The thermal stability methyl, propargyl, cyanomethyl, allyl and amine derivatives of azepines is compared.

Full Text

Restricted Access

About the authors

A. I. Kazakov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka

D. B. Lempert

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka

A. V. Nabatova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka

E. L. Ignatieva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka

D. V. Dashko

“Tekhnolog” Special Design and Technological Bureau

Email: akazakov@icp.ac.ru
Russian Federation, St. Petersburg

V. V. Raznoschikov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka

L. S. Yanovskiy

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Energetic Institute

Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka; Moscow

References

  1. S. G. Zlotin, A. M. Churakov, M. P. Egorov, et al., Mendeleev Communications, 31 (6), 731 (2021). https://doi.org/10.1016/j.mencom.2021.11.001
  2. T. M. Klapötke, Chemistry of High-Energy Materials. 6rd ed. Berlin: de Gruyter GmbH (2022). https://doi.org/10.1515/9783110739503
  3. M. S. Klenov, A. A. Guskov, O. V. Anikin et al., Angew. Chem. 55 (38), 11472 (2016). https://doi.org/10.1002/anie.201605611
  4. I. L. Dalinger, T. K. Shkineva, I. A. Vatsadze, et al., FirePhysChem. 1 (2), 83 (2021). https://doi.org/10.1016/j.fpc.2021.04.005
  5. Jing Zhou, Junlin Zhang, Bozhou Wang, et al., FirePhysChem., 2, 83 (2022). https://doi.org/10.1016/j.fpc.2021.09.005
  6. N. V. Muravyev, D. B. Meerov, K. A. Monogarov, et al., Chem. Eng. J. 421, 129804 (2021). https://doi.org/10.1016/j.cej.2021.129804
  7. V. P. Sinditskii, N. V. Yudin, S. I. Fedorchenko, et al., Thermochimica Acta, 691, 178703 (2020). https://doi.org/10.1016/j.tca.2020.178703
  8. J. Zhang, T. J. Hou, L. Zhang, J. Luo, Org. Lett. 20 (22), 7172 (2018). https://doi.org/10.1021/acs.orglett.8b03107
  9. A. A. Larin, A. V. Shaffer, M. A. Epishina, et al., ACS Appl. Energy Mater. 3 (8) 7764 (2020). https://doi.org/10.1021/acsaem.0c01162
  10. A. I. Kazakov, D. B. Lempert, A. V. Nabatova, et al., Russ. J. Appl. Chem. 92 (12), 1696 (2019).
  11. D. B. Lempert, E. L. Ignatieva, A. I. Stepanov, et al., Russ. J. Phys. Chem. B 17 (1), 1 (2023). https://doi.org/10.1134/S1990793123010256
  12. D. B. Lempert, E. L. Ignatieva, A. I. Stepanov, et al., Russ. J. Phys. Chem. B 17 (3), 702 (2023). https://doi.org/10.1134/S1990793123030065
  13. D. B. Lempert, E. L. Ignatieva, A. I. Stepanov et al, Russ. J. Phys. Chem. B 18 (1), 172 (2024). https://doi.org/10.1134/S1990793123010256
  14. A. I. Kazakov, D. B. Lempert, A. V. Nabatova, et al, Russ. J. Phys. Chem. B 17 (3), 673 (2023). https://doi.org/10.1134/S1990793123030041
  15. A. I. Kazakov, D. B. Lempert, A. V. Nabatova, et al., Russ. J. Phys. Chem. B 17 (5), 1083 (2023). https://doi.org/10.1134/S1990793123050032
  16. A. I. Kazakov, D. B. Lempert, A. V. Nabatova, et al., Russ. J. Phys. Chem. B 18 (2), 436 (2024). https://doi.org/10.1134/S199079312402009X
  17. D. B. Lempert, E. L. Ignatieva, A. I. Stepanov, et al, Russ. J. Phys. Chem. B 17 (5), 1106 (2023). https://doi.org/0.1134/S1990793123050068
  18. L. N. Galperin, Yu. R. Kolesov, L. B. Mashkinov, Yu. E. Turner, Differential automatic calorimeters (DAC) for various purposes, Proceedings of the Sixth All-Union Conference on Calorimetry. Tbilisi: Metsniereba, P. 539 (1973).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structures of N-substituted derivatives of 7H-difurazanofuroxanoazepine and 7H-trifurazanoazepine.

Download (108KB)
3. Fig. 2. TG (1) and DSC (2) curves for thermal decomposition of AzCH3. Sample weight ~2 mg, heating rate 5 K/min, argon purge rate 40 ml/min.

Download (98KB)
4. Fig. 3. Kinetic dependences of the amount of heat Qt released during thermal decomposition of the compound AzCH3 on time t, at different temperatures: 1 – 235.4, 2 – 251.2, 3 – 261.7, 4 – 270.4, 5 – 281.2, 6 – 288.4 °C. Points – experiment, solid curves – calculation according to equation (1).

Download (147KB)
5. Fig. 4. TG (1) and DSC (2) curves for thermal decomposition of Az(O)CH3. Sample weight ~2 mg, heating rate 5 K/min, argon purge rate 40 ml/min.

Download (98KB)
6. Fig. 5. Dependence of the reaction rate of thermal decomposition of Az(O)CH3 on the depth of decomposition at different temperatures: 1 – 220.2, 2 – 231.4, 3 – 234.8, 4 – 240.2, 5 – 245.2 °C.

Download (100KB)
7. Fig. 6. Kinetic curves of the dependence of the depth of decomposition of Az(O)CH3 on time at different temperatures: 1 – 245.2, 2 – 240.2, 3 – 234.8, 4 – 231.4, 5 – 215.2 °C. Points – experiment, solid curves – calculation according to equation (2).

Download (99KB)

Copyright (c) 2024 Russian Academy of Sciences