Combustion regimes of hydrogen at its direct injection into the internal combustion engine chamber

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper is dedicated to the analysis of processes in the combustion chamber of spark ignition engine under direct jet injection of hydrogen during compression stroke. By means of numerical modeling the features of hydrogen mixing with air and its combustion after the spark ignition at the instant when piston reaches top dead center (TDC) are investigated. Combustion regimes developing under the variation of injection pressure: from 20 to 140 atm, and start of injection, from 180° to 45° crank angle (CA) before TDC, are considered. In all cases the mass of hydrogen necessary for the formation of stoichiometric mixture with air during injection into the combustion chamber is supplied. It is received that the most uniform mixture by the instant of ignition is formed at advanced injection (180°–135° CA before TDC) under a relatively low pressure (20–60 atm). The ignition of uniform mixture in the conditions considered leads to detonation regime of combustion. Lower degree of mixture uniformity corresponds to slow, deflagration, regime of combustion. It is important to note that non-uniformity of mixture specifies the uncertainty of formation of a certain combustion regime depending on the local mixture composition in the vicinity of a spark. Herewith, the slowest combustion regime provides the maximum hydrogen combustion incompleteness, up to 8.2%. Generally, the considered ranges of injection pressure and start of injection lead to satisfactory levels of hydrogen combustion incompleteness, less than 4%.

Full Text

Restricted Access

About the authors

A. E. Smygalina

Joint institute for high temperatures of the Russian Academy of Sciences

Author for correspondence.
Email: smygalina-anna@yandex.ru
Russian Federation, Moscow

A. D. Kiverin

Joint institute for high temperatures of the Russian Academy of Sciences

Email: smygalina-anna@yandex.ru
Russian Federation, Moscow

References

  1. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev, and S.V. Khomik, Russ. J. Phys. Chem. B 16 (4), 686 (2022). https://doi.org/10.1134/S1990793122040297
  2. S.P. Medvedev, O.G. Maximova, T.T. Cherepanova, G.L. Agafonov, E.K. Anderzhanov, A.M. Tereza, and S.V. Khomik, Russ. J. Phys. Chem. B 16 (6), 1112 (2022). https://doi.org/10.1134/S1990793122060082
  3. S.M. Frolov and V.S. Ivanov, Russ. J. Phys. Chem. B 15 (2), 318 (2021). https://doi.org/10.1134/S1990793121020184
  4. H. Wei, Z. Hu, J. Ma, W. Ma, S. Yuan, Y. Hu, K. Hu, L. Zhou, and H. Wei, Int. J. Hydrogen Energy 48 (34), 12905 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.031
  5. Y. Duan, B. Sun, Q. Li, X. Wu, T. Hu, and Q. Luo, Energy Convers. Manag. 291, 117267 (2023). https://doi.org/10.1016/j.enconman.2023.117267
  6. C. Park, Y. Kim, S. Oh, J. Oh, Y. Choi, H. Baek, S.W. Lee, and K. Lee, Int. J. Hydrogen Energy 47 (50), 21552 (2022). https://doi.org/10.1016/j.ijhydene.2022.04.274
  7. Z. Fu, W. Gao, Y. Li, X. Hua, J. Zou, and Y. Li, Int. J. Hydrogen Energy 48 (51), 19700 (2023). https://doi.org/10.1016/j.ijhydene.2023.02.041
  8. M. Yosri, R. Palulli, M. Talei, J. Mortimer, F. Poursadegh, Y. Yang, and M. Brear, Int. J. Hydrogen Energy 48 (46), 17689 (2023). https://doi.org/10.1016/j.ijhydene.2023.01.228
  9. F. Lai, B. Sun, X. Wang, D. Zhang, Q. Luo, and L. Bao, Int. J. Hydrogen Energy 48 (20), 7488 (2023). https://doi.org/10.1016/j.ijhydene.2022.11.091
  10. A. Anticaglia, F. Balduzzi, G. Ferrara, M. De Luca, D. Carpentiero, A. Fabbri, and L. Fazzini, Int. J. Hydrogen Energy 48 (83), 32553 (2023). https://doi.org/10.1016/j.ijhydene.2023.04.339
  11. F. Zhao, B. Sun, S. Yuan, L. Bao, H. Wei, and Q. Luo, Int. J. Hydrogen Energy 49, Part B, 713 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.039
  12. R. Babayev, A. Andersson, A.S. Dalmau, H.G. Im, and B. Johansson, Int. J. Hydrogen Energy 46 (35), 18678 (2021). https://doi.org/10.1016/j.ijhydene.2021.02.223
  13. M.O Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, and C.K. Westbrook, Int. J. Chem. Kinet. 36 (11), 603 (2004). https://doi.org/10.1002/kin.20036
  14. O.M. Belotserkovskii and Yu.M. Davydov, Large-Particle Method in Gas Dynamics (Nauka, Moscow, 1982) [in Russian].
  15. M.A. Liberman, M.F. Ivanov, D.M. Valiev, and L.E. Eriksson, Combust. Sci. Technol. 178 (9), 1613 (2006). https://doi.org/10.1080/00102200500536316
  16. V.M. Zaichenko, A.D. Kiverin, A.E. Smygalina, and A.I. Tsyplakov, Thermal Engineering 65 (13), 1009 (2018). https://doi.org/10.1134/S0040601518130141
  17. A.E. Smygalina, A.D. Kiverin, V.M. Zaichenko, and A.I. Tsyplakov, J. Eng. Phys. Thermophys. 95 (1), 168 (2022). https://doi.org/10.1007/s10891-022-02478-y
  18. A. E. Smygalina and A. D. Kiverin, Journal of Zhejiang University Science A 23 (10), 838 (2022). https://doi.org/10.1631/jzus.A2200217
  19. A.D. Kiverin and A.E. Smygalina, High Temperature 60 (1), 94 (2022). https://doi.org/10.1134/S0018151X22010138
  20. M.F. Ivanov, A.D. Kiverin, I.S. Yakovenko, and M.A. Liberman, Int. J. Hydrogen Energy 38 (36), 16427 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.124
  21. A.D. Kiverin, A.E. Smygalina, and I.S. Yakovenko, Russ. J. Phys. Chem. B 14 (4), 607 (2020). https://doi.org/10.1134/S1990793120040168
  22. A.E. Smygalina and A.D. Kiverin, Russ. J. Phys. Chem. B 16 (6), 1102 (2022). https://doi.org/10.1134/S1990793122060124
  23. J.B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988).
  24. J. Warnatz, U. Maas, and R. W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Springer, Berlin, 2006).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the computational domain: 1 – axis of symmetry, 2 – wall with a gap, 3 – cylinder, 4 – high-pressure chamber, 5 – spark ignition position, 6 – bottom dead center, 7 – top dead center.

Download (11KB)
3. Fig. 2. Evolution of the mass fraction of hydrogen in the cylinder, w(H2), as H2 is injected under pressures of 20, 60, 100, and 140 atm (curves 1–4, respectively). The injection start time is 10 ms or 90° p.c.v.

Download (19KB)
4. Fig. 3. The degree of mixture homogeneity σ depending on time during hydrogen injection under pressure of 20, 60, 100 and 140 atm (fragments a–g, respectively) at injection start times of 0°, 45°, 90° and 135° p.c.v. (curves 1–4, respectively, in each fragment).

Download (59KB)
5. Fig. 4. Fields of the mole fraction of hydrogen, Y(H2), at successive moments of time during injection under pressure of 20 (a) and 100 atm (b) at the moment corresponding to 0° p.c.v.

Download (44KB)
6. Fig. 5. Fields of the mole fraction of hydrogen, Y(H2), at successive moments in time during injection under pressure of 20 (a) and 100 atm (b) at the moment corresponding to 135° p.c.v.

Download (26KB)
7. Fig. 6. Indicator diagrams in the case of ignition at 180° CV for the following injection conditions: under a pressure of 20, 60, 100 and 140 atm (fragments a–g) at times corresponding to 0°, 45°, 90° and 135° CV (curves 1–4, respectively, in each fragment).

Download (66KB)
8. Fig. 7. Change in time of the proportion of burnt hydrogen by mass, xb, in the case of ignition at 180° C.P.K. for the following injection conditions: under pressure of 20, 60, 100 and 140 atm (fragments a–g) at times corresponding to 0°, 45°, 90° and 135° C.P.K. (curves 1–4, respectively, in each fragment).

Download (56KB)
9. Fig. 8. Change in the mass fraction of hydrogen in the cylinder, w(H2), over time in the case of ignition at 180° CVH for the following injection conditions: under a pressure of 20, 60, 100 and 140 atm (fragments a–g) at times corresponding to 0°, 45°, 90° and 135° CVH (curves 1–4, respectively, in each fragment).

Download (57KB)
10. Fig. 9. Dependence of the degree of hydrogen underburning by mass, δm, on the injection start time (fragment a, curves 1–4 correspond to initial pressures of 20, 60, 100 and 140 atm) and injection pressure (fragment b, curves 1–4 correspond to injection start times of 0°, 45°, 90° and 135° p.c.v.).

Download (30KB)

Copyright (c) 2024 Russian Academy of Sciences