Combustion regimes of hydrogen at its direct injection into the internal combustion engine chamber
- Authors: Smygalina A.E.1, Kiverin A.D.1
-
Affiliations:
- Joint institute for high temperatures of the Russian Academy of Sciences
- Issue: Vol 43, No 8 (2024)
- Pages: 78-91
- Section: Combustion, explosion and shock waves
- URL: https://journals.eco-vector.com/0207-401X/article/view/681887
- DOI: https://doi.org/10.31857/S0207401X24080097
- ID: 681887
Cite item
Abstract
The paper is dedicated to the analysis of processes in the combustion chamber of spark ignition engine under direct jet injection of hydrogen during compression stroke. By means of numerical modeling the features of hydrogen mixing with air and its combustion after the spark ignition at the instant when piston reaches top dead center (TDC) are investigated. Combustion regimes developing under the variation of injection pressure: from 20 to 140 atm, and start of injection, from 180° to 45° crank angle (CA) before TDC, are considered. In all cases the mass of hydrogen necessary for the formation of stoichiometric mixture with air during injection into the combustion chamber is supplied. It is received that the most uniform mixture by the instant of ignition is formed at advanced injection (180°–135° CA before TDC) under a relatively low pressure (20–60 atm). The ignition of uniform mixture in the conditions considered leads to detonation regime of combustion. Lower degree of mixture uniformity corresponds to slow, deflagration, regime of combustion. It is important to note that non-uniformity of mixture specifies the uncertainty of formation of a certain combustion regime depending on the local mixture composition in the vicinity of a spark. Herewith, the slowest combustion regime provides the maximum hydrogen combustion incompleteness, up to 8.2%. Generally, the considered ranges of injection pressure and start of injection lead to satisfactory levels of hydrogen combustion incompleteness, less than 4%.
Full Text

About the authors
A. E. Smygalina
Joint institute for high temperatures of the Russian Academy of Sciences
Author for correspondence.
Email: smygalina-anna@yandex.ru
Russian Federation, Moscow
A. D. Kiverin
Joint institute for high temperatures of the Russian Academy of Sciences
Email: smygalina-anna@yandex.ru
Russian Federation, Moscow
References
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev, and S.V. Khomik, Russ. J. Phys. Chem. B 16 (4), 686 (2022). https://doi.org/10.1134/S1990793122040297
- S.P. Medvedev, O.G. Maximova, T.T. Cherepanova, G.L. Agafonov, E.K. Anderzhanov, A.M. Tereza, and S.V. Khomik, Russ. J. Phys. Chem. B 16 (6), 1112 (2022). https://doi.org/10.1134/S1990793122060082
- S.M. Frolov and V.S. Ivanov, Russ. J. Phys. Chem. B 15 (2), 318 (2021). https://doi.org/10.1134/S1990793121020184
- H. Wei, Z. Hu, J. Ma, W. Ma, S. Yuan, Y. Hu, K. Hu, L. Zhou, and H. Wei, Int. J. Hydrogen Energy 48 (34), 12905 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.031
- Y. Duan, B. Sun, Q. Li, X. Wu, T. Hu, and Q. Luo, Energy Convers. Manag. 291, 117267 (2023). https://doi.org/10.1016/j.enconman.2023.117267
- C. Park, Y. Kim, S. Oh, J. Oh, Y. Choi, H. Baek, S.W. Lee, and K. Lee, Int. J. Hydrogen Energy 47 (50), 21552 (2022). https://doi.org/10.1016/j.ijhydene.2022.04.274
- Z. Fu, W. Gao, Y. Li, X. Hua, J. Zou, and Y. Li, Int. J. Hydrogen Energy 48 (51), 19700 (2023). https://doi.org/10.1016/j.ijhydene.2023.02.041
- M. Yosri, R. Palulli, M. Talei, J. Mortimer, F. Poursadegh, Y. Yang, and M. Brear, Int. J. Hydrogen Energy 48 (46), 17689 (2023). https://doi.org/10.1016/j.ijhydene.2023.01.228
- F. Lai, B. Sun, X. Wang, D. Zhang, Q. Luo, and L. Bao, Int. J. Hydrogen Energy 48 (20), 7488 (2023). https://doi.org/10.1016/j.ijhydene.2022.11.091
- A. Anticaglia, F. Balduzzi, G. Ferrara, M. De Luca, D. Carpentiero, A. Fabbri, and L. Fazzini, Int. J. Hydrogen Energy 48 (83), 32553 (2023). https://doi.org/10.1016/j.ijhydene.2023.04.339
- F. Zhao, B. Sun, S. Yuan, L. Bao, H. Wei, and Q. Luo, Int. J. Hydrogen Energy 49, Part B, 713 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.039
- R. Babayev, A. Andersson, A.S. Dalmau, H.G. Im, and B. Johansson, Int. J. Hydrogen Energy 46 (35), 18678 (2021). https://doi.org/10.1016/j.ijhydene.2021.02.223
- M.O Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, and C.K. Westbrook, Int. J. Chem. Kinet. 36 (11), 603 (2004). https://doi.org/10.1002/kin.20036
- O.M. Belotserkovskii and Yu.M. Davydov, Large-Particle Method in Gas Dynamics (Nauka, Moscow, 1982) [in Russian].
- M.A. Liberman, M.F. Ivanov, D.M. Valiev, and L.E. Eriksson, Combust. Sci. Technol. 178 (9), 1613 (2006). https://doi.org/10.1080/00102200500536316
- V.M. Zaichenko, A.D. Kiverin, A.E. Smygalina, and A.I. Tsyplakov, Thermal Engineering 65 (13), 1009 (2018). https://doi.org/10.1134/S0040601518130141
- A.E. Smygalina, A.D. Kiverin, V.M. Zaichenko, and A.I. Tsyplakov, J. Eng. Phys. Thermophys. 95 (1), 168 (2022). https://doi.org/10.1007/s10891-022-02478-y
- A. E. Smygalina and A. D. Kiverin, Journal of Zhejiang University Science A 23 (10), 838 (2022). https://doi.org/10.1631/jzus.A2200217
- A.D. Kiverin and A.E. Smygalina, High Temperature 60 (1), 94 (2022). https://doi.org/10.1134/S0018151X22010138
- M.F. Ivanov, A.D. Kiverin, I.S. Yakovenko, and M.A. Liberman, Int. J. Hydrogen Energy 38 (36), 16427 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.124
- A.D. Kiverin, A.E. Smygalina, and I.S. Yakovenko, Russ. J. Phys. Chem. B 14 (4), 607 (2020). https://doi.org/10.1134/S1990793120040168
- A.E. Smygalina and A.D. Kiverin, Russ. J. Phys. Chem. B 16 (6), 1102 (2022). https://doi.org/10.1134/S1990793122060124
- J.B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988).
- J. Warnatz, U. Maas, and R. W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Springer, Berlin, 2006).
Supplementary files
