Influence of water microdroplets on hydrogen–air flame instability development in a channel

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper is devoted to the numerical analysis of the gaseous combustion process in a channel willed with the hydrogen-air mixture with the inflow of a fresh mixture seeded with microdroplets of water. The dynamics of microdroplets are described in the Lagrangian approximation, which makes it possible to identify the role of local interaction between the droplets and the flame front. It has been shown that the impact of droplets on the front can provoke the generation of disturbances of the flame front and intensify the development of front instability, thereby causing an integral increase in the combustion rate. Using spectral analysis of the structure of the front in the presence of microdroplets, the dynamics of the development of individual harmonics of front disturbances was analyzed and the mechanisms of evolution of the flame front under the influence of microdroplets of water were identified.

全文:

受限制的访问

作者简介

I. Yakovenko

Joint institute for high temperatures of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: yakovenko.ivan@bk.ru
俄罗斯联邦, Moscow

A. Kiverin

Joint institute for high temperatures of the Russian Academy of Sciences

Email: yakovenko.ivan@bk.ru
俄罗斯联邦, Moscow

参考

  1. G.O. Thomas, A. Jones, M.J. Edwards, Combust. Sci. Technol. 80(1-3), 47-61 (1991). https://doi.org/10.1080/00102209108951776
  2. G.O. Thomas, M.J. Edwards, D.H. Edwards, Combust. Sci. Technol. 71(4-6), 233-245 (1990). https://doi.org/10.1080/00102209008951634
  3. K. van Wingerden, B. Wilkins, J. Bakken, G. Pedersen, J. Loss. Prev. Process. Ind. 8(2), 61-70 (1995). https://doi.org/10.1016/0950-4230(95)00007-N
  4. L. Boeck, A. Kink , D. Oezdin, J. Hasslberger, T. Sattelmayer, Int. J. Hydrogen Energy 40(21), 6995-7004 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.129
  5. S.S. Tsai, N.J. Liparulo Fog inerting criteria for hydrogen/air mixtures, Tech. Rep. CONF-821026e. Palo Alto, CA (USA): Electric Power Research Inst. (1982).
  6. S.P. Medvedev , B.E. Gel’fand, A.N. Polenov, S.V. Khomik, Combust. Explos. Shock Waves 38(4), 381-386 (2002) https://doi.org/10.1023/A:1016277028276
  7. M. Gieras, J. Loss. Prev. Process. Ind. 21(4), 472-477 (2008). https://doi.org/10.1016/j.jlp.2008.03.004.
  8. P. Zhang, Y. Zhou, X. Cao, X. Gao, M. Bi, J. Loss. Prev. Process. Ind. 29(1), 313-318 (2014). https://doi.org/10.1016/j.jlp.2014.03.014
  9. K. van Wingerden, B. Wilkins, J. Loss. Prev. Process. Ind. 8(2), 53-59. (1995). https://doi.org/10.1016/0950-4230(95)00002-I
  10. G.O. Thomas, J.R. Brenton An investigation of factors of relevance during explosion suppression by water sprays. Tech. Rep. OTH 94 463. London, UK: The University College of Wales (1996).
  11. A.S. Betev, A.D. Kiverin, S.P. Medvedev, I.S. Yakovenko, Russian Journal of Physical Chemistry B 14(6), 940–945 (2020). https://doi.org/10.1134/S1990793120060160
  12. C. Nicoli, P. Haldenwang, B. Denet, Combust. Sci. Technol. 191(2), 197-207 (2019). https://doi.org/10.1080/00102202.2018.1453728
  13. C. Nicoli, P. Haldenwang, B. Denet, Combust. Theor. Model. 21(4), 630-645 (2017). https://doi.org/10.1080/13647830.2017.1279756
  14. M. Matalon, Annu. Rev. Fluid Mech. 39(1), 163-191 (2007). https://doi.org/10.1146/annurev.fluid.38.050304. 092153
  15. I.S. Yakovenko, A.D. Kiverin, Int. J. Hydrogen Energy 46(1), 1259-1272 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.234
  16. I.S. Yakovenko, I.S. Medvedkov, A.D. Kiverin, Russian Journal of Physical Chemistry B 16(2), 294–299 (2022). https://doi.org/10.1134/S1990793122020142
  17. D.T. Sheppard Spray Characteristics of Fire Sprinklers, National Institute of Standards and Technology, NIST GCR 02-838 (2002).
  18. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev, S.V. Khomik, Russian Journal of Physical Chemistry B 16(4), 686–692 (2022). https://doi.org/10.1134/S1990793122040297
  19. R.G. Rehm, H.R. Baum, Journal of Research of the National Bureau of Standards, 83(3), 297-308 (1978). https://doi.org/10.6028/jres.083.019
  20. K. McGrattan, R. McDermott, S. Hostikka, et. al. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model, Tech. Rep. NIST Special Publication 1018-1, U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD (2019). https://doi.org/10.6028/NIST.SP.1018
  21. C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji Multiphase flows with droplets and particles. 2nd ed. Boca Raton, FL (USA): CRC Press, 2012. ISBN 978-0-4291-0639-2
  22. N.P. Cheremisinoff Gas-liquid flows. Encyclopedia of fluid mechanics. 1st ed., vol. 3. Houston, TX (USA): Gulf Publishing, 1986. ISBN 0-87201-515-7
  23. A. Keromnes, W.K. Metcalfe, K.A. Heufer et al., Combust. Flame. 160, 995-1011. (2013). https://doi.org/10.1016/j.combustflame.2013.01.001.
  24. NRG computational package for reactive flows modeling. https://github.com/yakovenko-ivan/NRG
  25. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev, S.V. Khomik, T. T. Cherepanova Russian Journal of Physical Chemistry B 17(4), 974–978 (2023). https://doi.org/10.1134/S1990793123040309
  26. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S. P. Medvedev, S. V. Khomik, T. T. Cherepanova Russian Journal of Physical Chemistry B 17(2), 425–432 (2023). https://doi.org/10.1134/S1990793123020173
  27. R.V. Fursenko, K.L. Pan, S.S. Minaev Phys. Rev. E. 78, 056301 (2008). https://doi.org/10.1103/PhysRevE.78.056301
  28. F. Creta, N. Fogla, M. Matalon Combust. Theor. Model. 15(2), 267-298 (2011) https://doi.org/10.1080/13647830.2010.538722

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Statement of the problem of flame propagation in an open channel with the supply of a fresh mixture with an admixture of suspended microdroplets of water: the dashed line is the initial disturbance, the dash-dotted line is the axis of symmetry.

下载 (11KB)
3. Fig. 2. Dispersion curve of the flame front instability of a mixture of 15% hydrogen with air.

下载 (10KB)
4. Fig. 3. Dynamics of flame front structure development in a pure gas mixture of 15% hydrogen with air and in the presence of water microdroplets: a – combustion without water droplets; b – combustion with water droplets supplied to the combustion zone at hd = 2 mm, 3 mm (c) and 4 mm (d). Solid black lines are temperature isolines T = 1000 K, dashed red lines are the initial disturbance, and dash-dotted black lines are microdroplet trajectories. The time between individual isolines is Δt = 1 ms.

下载 (63KB)
5. Fig. 4. Time dependences of the flame front harmonic amplitude An(t) for the initial disturbance n = 1 (a) and the harmonic with a wavelength equal to the channel width n = 1 (b). Solid black lines – pure gas mixture without droplets, dashed-dotted green lines – hd = 4 mm, solid red lines – hd = 3 mm, dashed blue lines – hd = 2 mm.

下载 (31KB)
6. Fig. 5. a – Dependence of the flame front perimeter values, Pf, normalized to the channel width, on time. b – Time dependence of the velocity of the average coordinate of the flame front in the laboratory reference system, ufL, normalized to the value of the normal combustion velocity Sb. The designations are the same as for Fig. 4.

下载 (38KB)

版权所有 © Russian Academy of Sciences, 2024