Equations of Multimoment Hydrodynamics in the Problem of Flowing Around a Sphere. 1. Construction of Asymmetric Distributions of Hydrodynamic Values
- Authors: Lebed I.V.1
-
Affiliations:
- Institute of Applied Mechanics of the Russian Academy of Sciences
- Issue: Vol 44, No 6 (2025)
- Pages: 86-96
- Section: Dynamics of transport processes
- URL: https://journals.eco-vector.com/0207-401X/article/view/686553
- DOI: https://doi.org/10.31857/S0207401X25060073
- ID: 686553
Cite item
Abstract
The equations of multimoment hydrodynamics are used to interpret flows behind the sphere that do not have axial symmetry. The equations of multimoment hydrodynamics follow from the equations for pair distribution functions. The derivation of the equations is free from approximations similar to the Boltzmann hypothesis. In accordance with the general approach, the pair function is represented as an infinite series of products of trajectory invariants with unknown coefficients. A finite number of terms are preserved in this series, which make it possible to construct asymmetric distributions of hydrodynamic values. Analytical expressions for the principal hydrodynamic values are presented. Solutions of nonlinear differential equations for unknown coefficients will make it possible to trace the evolution of the observed asymmetric flows, culminating in pronounced turbulence.
Full Text

About the authors
I. V. Lebed
Institute of Applied Mechanics of the Russian Academy of Sciences
Author for correspondence.
Email: lebed-ivl@yandex.ru
Russian Federation, Moscow
References
- L.G. Loitsyanskii. Mechanics of Liquids and Gases. Oxford: Pergamon, 1966.
- Mikhalkin V.N., Sumskoi S.I., Tereza A.M. et al. // Russ. J. Phys. Chem. B 2022. V. 16. P. 629.
- Lebed I.V., Umanskii S.Y. // Russ. J. Phys. Chem. B. 2007. V. 1. P. 52. https://doi.org/10.1134/S1990793107010071
- I.V. Lebed. The Foundations of Multimoment Hydrodynamics. Part 1: Ideas, Methods and Equations. N-Y: Nova Science Publishers, 2018.
- Lebed I.V. // Chem. Phys. Lett. 1990. V. 165. № 1-2. P. 226, https://doi.org/10.1016/0009-2614(90)85433-D
- Lebed I.V. // Physica A. 2019. V. 515. P. 715. https://doi.org/10.1016/j.physa.2018.09.166
- Lebed I.V. // Physica A. 2019. V. 524. P. 325. https://doi.org/10.1016/j.physa.2019.04.086
- Lebed I.V. // Chem. Phys. Rep. 1997. V. 16. P. 1263.
- Lebed I.V. // Russ. J. Phys. Chem. B. 2014. V. 8. P. 240. https://doi.org/10.1134/S1990793114020171
- Kiselev A.Ph., Lebed I.V. // Chaos, Solitons, Fractals. 2021. V. 142. №110491, http:// doi.org/10.1016/j.chaos.2020.110491
- Lebed I.V. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 370. http:// doi.org/10.1134/S199079312202018X
- Lebed I.V. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1194. https://doi.org/10.1134/S1990793123050056
- Lebed I.V. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1414. https://doi.org/10.1134/S1990793123060179
- Lebed I.V. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1296. https://doi.org/10.1134/S1990793124700957
- Lebed I.V. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1405. https://doi.org/10.1134/S1990793124700969
Supplementary files
