Chain Processes in the Chapman Cycle

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Numerical data are presented on the chain length of the so-called zero oxygen cycle, i.e. such a cycle in which ozone destruction does not occur as in purely catalytic cycles. The data correspond to the conditions of June 2000 at latitude 50 N in the altitude range of 15–55 km. Calculations were performed using the interactive two-dimensional SOCRATES model. Forecasts of atmospheric greenhouse gas content of the Intergovernmental Panel on Climate Change RCP 4.5 for the year 2000 were used as initial data for calculations. Calculations of the chain length of zero cycles were carried out using the algorithm proposed earlier by the author for determining the speed of the limiting stage of the catalytic cycle.

Full Text

Restricted Access

About the authors

I. K. Larin

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: iklarin@narod.ru
Russian Federation, Moscow

References

  1. Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2022. V. 16. № 6. P. 1182. https://doi.org/10.1134/S1990793122060239
  2. Morozov I. I., Vasiliev E. S., Volkov N. D. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 5. P. 877. https://doi.org/10.1134/S1990793122050220
  3. Eganov A.A., Kardonsky D.A., Sulimenkov I.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 503. https://doi.org/10.1134/S1990793123020240
  4. Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 234. https://doi.org/10.1134/S1990793123010141
  5. Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 821. https://doi.org/10.1134/S1990793124700246
  6. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken: John Wiley & Sons, 2016.
  7. Larin I.K., Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 675. https://doi.org/10.1134/S1990793124700258
  8. Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2024. V. 18. № 5. P. 1422. https://doi.org/10.1134/S1990793124701148
  9. Purmal’ A.P. A, B, C…of chemical kinetics. Moscow: Akademkniga, 2004.
  10. Larin I. // Atm. Climate Sci. 2013. V. 3. № 1. P. 141. https://doi.org/10.4236/acs.2013.31016
  11. Chapman S. // Met. Roy. Met. Soc. 1930. V. 3. P. 103.
  12. URL: http://acd.ucar.edu/models/SOCRATES
  13. URL:https://www1.cmos.ca/abstracts/abstract_print_view.asp?absId=5371
  14. Larin I.K., Kuskov M.L. // Russ. J. Phys. Chem. B. 2014. V. 8. № 2. P. 254. https://doi.org/10.1134/S199079311402016X
  15. Larin I.K. Chemical physics of the ozone layer. Moscow: RAS, 2017.
  16. Brasseur G., Solomon S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Third revised and enlarged edition. Springer, 2005.
  17. Shimazaki T. Minor constituents in the middle atmosphere. Tokyo: Terra Scientific Publishing Company, 1985.
  18. Larin I.K. // Russ. J. Phys. Chem. B. 2018. V. 12. № 4. P. 791. https://doi.org/10.1134/S1990793118040279

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Rates of zero-cycle reactions, their limiting stage, and the cut-off reaction in the Chapman cycle. The data on the component concentrations were calculated using the two-dimensional atmospheric model SOCRATES [12] under the RCP 4.5 scenario [13] for the conditions of summer 2000.

Download (210KB)
3. Fig. 2. Chain length of the zero cycle in the Chapman cycle. The data on component concentrations are calculated in the same way as in Fig. 1.

Download (138KB)

Copyright (c) 2025 Russian Academy of Sciences