Effect of Propane Additives on Laminar Burning Velocity in Hydrogen-Air-Water Steam Mixtures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A numerical simulation was conducted to investigate the laminar flame speed in a stoichiometric mixture of hydrogen, air, and water vapor, with the addition of a small amount of propane, at an initial temperature of 323 K and a pressure of 1 atm. The results demonstrate that even at low concentrations, propane acts as an effective inhibitor of combustion processes in hydrogen mixtures. A sensitivity analysis was performed, identifying the key chemical reactions that influence the formation of the laminar flame speed. Furthermore, application of Le Chatelier’s principle revealed that even minor additions of propane can substantially alter the mixture composition, specifically its overall fuel equivalence ratio, which may also affect the flame speed.

Full Text

Restricted Access

About the authors

P. N. Krivosheev

Lykov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus

Author for correspondence.
Email: krivosheyev.pavlik@gmail.com
Belarus, Minsk

Yu. S. Kisel

Lykov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus

Email: krivosheyev.pavlik@gmail.com
Belarus, Minsk

References

  1. Hu Q., Zhang X., Hao H. // Int. J. Hydrogen Energ. 2023. V. 48. № 36. P. 13705. https://doi.org/10.1016/j.ijhydene.2022.11.302
  2. Bentaib A., Meynet N., Bleyer A. // Nucl. Eng. Technol. 2015. V. 47. № 1. P. 26. https://doi.org/10.1016/j.net.2014.12.001
  3. Babushok V., Tsang W. // Combust. and Flame. 2000. V. 123. № 4. P. 488. https://doi.org/10.1016/S0010-2180(00)00168-1
  4. Baldwin R.R., Corney N.S., Precious R.M. // Nature. 1952. V. 169. P. 201. https://doi.org/10.1038/169201b0
  5. Miller D.R., Evers R.L., Skinner G.B. // Combust. and Flame. 1963. V. 7. P. 137. https://doi.org/10.1016/0010-2180(63)90171-8
  6. Azatyan V.V., Namoradze M.A. // Combust. Explo. Shock Waves. 1973. V. 9. P.74. https://doi.org/10.1007/BF00740363
  7. Romanovich L.B., Azatyan V.V. // Russ. Chem. Bull. 1973. V. 22 P. 719. https://doi.org/10.1007/BF00857036
  8. Denisov E.T. // Russ. Chem. Rev. 1973. V. 42. № 3. P. 157. https://doi.org/10.1070/RC1973v042n03ABEH002572
  9. Katsitadze M.M., Dzotsenidze Z.G., Museridze M.D. et al. // React. Kinet. Catal. Lett. 1978. V. 9. P. 119. https://doi.org/10.1007/BF02068910
  10. Zamashchikov V.V., Bunev V.A. // Combust. Explo. Shock Waves. 2001. V. 37. P. 378. https://doi.org/10.1023/A:1017880308455
  11. Azatyan V.V., Pavlov V.A., Shatalov O.P. // Kinet. Catal. 2005. V. 46. P. 789. https://doi.org/10.1007/s10975-005-0137-1
  12. Azatyan V.V., Borisov A.A., Merzhanov A.G. et al. // Combust. Explo. Shock Waves. 2005. V. 41. P. 1. https://doi.org/10.1007/s10573-005-0001-7
  13. Bunev V.A. // Combust. Explo. Shock Waves. 2006. V. 42. P. 367. https://doi.org/10.1007/s10573-006-0064-0
  14. Azatyan V.V., Kalachev V.I., Masalova V.V. // Kinet. Catal. 2006. V. 47. P. 481. https://doi.org/10.1134/S0023158406040021
  15. Bunev V.A., Babkin V.S. // Mendeleev Commun. 2006. V. 16. № 2. P. 104. https://doi.org/10.1070/MC2006v016n02ABEH002270
  16. Rubtsov N.M., Azatyan V.V., Baklanov D.I. et al. // Theor. Found. Chem. Eng. 2007. V. 41. P. 154. https://doi.org/10.1134/S004057950702008X
  17. Bunev V.A., Namyatov I.G., Babkin V.S. // Russ. J. Phys. Chem. B. 2007. V. 1. P. 537. https://doi.org/10.1134/S1990793107060048
  18. Azatyan V.V., Abramov S.K., Prokopenko V.M. // Dokl. Phys. Chem. 2012. V. 447. P. 216. https://doi.org/10.1134/S0012501612120020
  19. Bunev V.A., Bolshova T.A., Babkin, V.S. // Combust. Explos. Shock Waves. 2016. V. 52. P. 255. https://doi.org/10.1134/S0010508216030011
  20. Yang Zh., Zhao K., Song X. et al. // Int. J. Hydrogen Energ. 2021. V. 46. № 70. P. 34998. https://doi.org/10.1016/j.ijhydene.2021.08.035
  21. Shang Sh., Bi M., Zhang K. et al. // Int. J. Hydrogen Energ. 2022. V. 47. № 61. P. 25864. https://doi.org/10.1016/j.ijhydene.2022.06.012
  22. Shang Sh., Bi M., Zhang Z. et al. // Int. J. Hydrogen Energ. 2022. V. 47. № 60. P. 25433. https://doi.org/10.1016/j.ijhydene.2022.05.256
  23. Shang Sh., Bi M., Zhang Ch. et al. // Int. J. Hydrogen Energ. 2024. V. 50. P. 1234. https://doi.org/10.1016/j.ijhydene.2023.10.042
  24. Smith G.P., Golden D.M., Frenklach M. et al. http://combustion.berkeley.edu/gri-mech/
  25. Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research). University of California at San Diego. http://combustion.ucsd.edu
  26. Metcalfe W.K., Burke S.M., Ahmed S.S. et al. // Int. J. Chem. Kinet. 2013. V. 45. № 10. P. 638. https://doi.org/10.1002/kin.20802
  27. Babichev A.N. Fizicheskie velichiny. Spravochnik. Moscow: Energoatomizdat, 1991.
  28. Gel’fand, B.E. // Combust. Explos. Shock Waves. 2002. V. 38. P. 581. https://doi.org/10.1023/A:1020346719768
  29. Le Chatelier H. // Bull. Soc. Chim. Fr. 1898. V. 74. P. 483.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Calculated dependence of laminar flame velocity on inhibitor concentration for a stoichiometric mixture of hydrogen with air and water vapour. Initial temperature - 323 K, initial pressure - 1 atm.

Download (459KB)
3. Fig. 2. Reaction sensitivity coefficients for a mixture of hydrogen with air and water vapour in the presence of a small amount of propane. Initial temperature - 323 K, initial pressure - 1 atm.

Download (3MB)
4. Fig. 3. Calculated concentrations of the main intermediate radicals in the flame of a mixture of hydrogen with air and water vapour in the presence of a small amount of propane. Aramco 1.3 mechanism, initial temperature - 323 K, initial pressure - 1 atm.

Download (1MB)
5. Fig. 4. Calculated temperature profiles in the flame of a mixture of hydrogen with air and water vapour as a function of propane concentration. Aramco 1.3 mechanism, initial temperature - 323 K, initial pressure - 1 atm.

Download (485KB)
6. Fig. 5. Deflagration limits of C3H8-H2 mixtures with air, calculated by Le Chatelier's rule: 1 - lower concentration limit, 2 - stoichiometric composition, 3 - upper concentration limit.

Download (437KB)

Copyright (c) 2025 Russian Academy of Sciences