Electronic Structure of Semiconductor Nanoparticles in One-Component and Mixed Systems
- 作者: Kurmangaleev K.S.1, Bodneva V.L.1, Posvyansky V.S.1, Trakhtenberg L.I.1,2
- 
							隶属关系: 
							- Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Lomonosov Moscow State University
 
- 期: 卷 44, 编号 6 (2025)
- 页面: 75-85
- 栏目: Chemical physics of nanomaterials
- URL: https://journals.eco-vector.com/0207-401X/article/view/686548
- DOI: https://doi.org/10.31857/S0207401X25060062
- ID: 686548
如何引用文章
详细
The distribution of electron density along the radius of nanoparticles in one- and two-component semiconductor systems at different temperatures and radii of nanoparticles has been obtained taking into account physicochemical processes on their surface. The influence of surface modification of In2O3 nanoparticles by CeO2 nanoclusters in changing the distribution of conduction electrons and the magnitude of the electrostatic field in the nanoparticle volume is demonstrated. The role of these distributions in various physical and chemical phenomena involving semiconductor nanoparticles is discussed.
全文:
 
												
	                        作者简介
K. Kurmangaleev
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: litrakh@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
V. Bodneva
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
														Email: litrakh@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
V. Posvyansky
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
														Email: litrakh@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
L. Trakhtenberg
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Lomonosov Moscow State University
														Email: litrakh@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow; Moscow						
参考
- Barsan N., Koziej D., Weimar U. // Sens. Actuators, B. 2007. V. 121. № 1. P. 18. https://doi.org/10.1016/j.snb.2006.09.047
- Wang Z., Hou C., De Q., Gu F., Han D. // ACS Sensors. 2018. V. 3. № 2. P. 468. https://doi.org/10.1021/acssensors.7b00896
- Majhi S.M., Navale S.T., Mirzaei A., Kim H.W., Kim S.S. // Inorg. Chem. Front. 2023. V. 10. № 12. P. 3428. https://doi.org/10.1039/D3QI00099K
- Suematsu K., Ma N., Yuasa M., Kida T., Shimanoe K. // RSC Advances. 2015. V. 5. № 105. P. 86347. https://doi.org/10.1039/C5RA17556A
- Yamazoe N. // Sens. Actuators, B. 1991. V. 5. P. 7. https://doi.org/10.1016/0925-4005(91)80213-4
- Lupan O., Postica V., Labat F., Ciofini I., Pauporté T., Adelung R. // Ibid. 2018. V. 254. P. 1259. https://doi.org/10.1016/j.snb.2017.07.200
- Ikim M.I., Spiridonova E.Yu., Gromov V.F., Gerasimov G.N., Trakhtenberg L.I. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 774. https://doi.org/10.1134/s199079312303003x
- Ikim M.I., Spiridonova E.Yu., Gromov V.F., Gerasimov G.N., Trakhtenberg L.I. // Russ.J.Phys.Chem.B. 2024. V. 18. № 1. P. 283. https://doi.org/10.1134/S199079312401010X
- Pigalskiy K.S., Vishnev A.A., Baldin E.D., Trakhtenberg L.I. // Russ.J.Phys. Chem.B. 2024. V. 18. № 3. P. 624. https://doi.org/10.1134/S1990793124020131
- Bayan E.M., Lupeiko T.G., Knyashchuk A.A., Pustovaya L.E., Fedorenko A.G. // Russ.J.Phys.Chem.B. 2017. V. 11. № 4. P. 600. https://doi.org/10.1134/S1990793117040042
- Ikim M.I., Gerasimov G.N., Erofeeva A.R., Gromov V.F., Ilegbusi O.J., Trakhtenberg L.I. // Chem. Phys. Lett. 2024. V. 845. P. 141321. https://doi.org/10.1016/j.cplett.2024.141321
- Cabot A., Arbiol J., Morante J.R., Weimar U., Bârsan N., Göpel W. // Sens. Actuators, B. 2000. V. 70. P. 87. https://doi.org/10.1016/S0925-4005(00)00565-7
- Kurmangaleev K.S., Ikim M.I., Bodneva V.L., Posvyanskii V.S., Ilegbusi O.J., Trakhtenberg L.I. // Sens.Actuators, B. 2023. V. 396. P. 134585. https://doi.org/10.1016/j.snb.2023.134585
- Karim W., Spreafico C., Kleibert A., Gobrecht J., VandeVondele J., Ekinci Y., Van Bokhoven J.A. // Nature. 2017. V. 541. № 1. P. 68. https://doi.org/10.1038/nature20782
- Ohya Y., Yamamoto T., Ban T. // J. Am. Ceram. Soc. 2008. V. 91. № 1. P. 240. https://doi.org/10.1111/j.1551-2916.2007.02031.x
- Buckeridge J., Catlow C.R.A., Farrow M.R., Logsdail A.J., Scanlon D.O., Keal T.W., Sherwood P., Woodley S.M., Sokol A.A., Walsh A. // Phys. Rev. Mater. 2018. V. 2. № 5. P. 054604. https://doi.org/10.1103/PhysRevMaterials.2.054604
- Hagleitner D.R., Menhart M., Jacobson P. et al.// Physical Review B. 2012. V. 85. № 11. P. 115441. https://doi.org/10.1103/PhysRevB.85.115441
- Brinzari V., Cho B.K., Kamei M., Korotcenkov G. // Appl. Surf. Sci. 2015. V. 324. P. 123. https://doi.org/10.1016/j.apsusc.2014.10.072
- King P.D.C., Veal T.D., Payne D.J. et al.// Phys. Rev. Lett. 2008. V. 101. № 11. P. 116808. https://doi.org/10.1103/PhysRevLett.101.116808
- King P.D.C., Veal T.D., Fuchs F. et al. // Phys. Rev. B. 2009. V. 79. № 20. P. 205211. https://doi.org/10.1103/PhysRevB.79.205211
- Bierwagen O., Speck J.S., Nagata T. et al. // Appl. Phys. Lett. 2011. V. 98. № 17. P. 172101. https://doi.org/10.1063/1.3583446
- Kurmangaleev K.S., Mikhailova T.Yu., Polunin K.S., Ilegbusi O.J., Trakhtenberg L.I. // Chem. Phys. Lett. 2024. V. 856. P. 141649. https://doi.org/10.1016/j.cplett.2024.141649
- Prathap P., Devi G.G., Subbaiah Y.P.V., Ramakrishna Reddy K.T., Ganesan V. // Curr. Appl. Phys. 2008. V. 8. № 2. P. 120. https://doi.org/10.1016/j.cap.2007.06.001
- Jimenez B.L.C., Méndez P. H.A., Páez S. B.A., Ramírez O.M.E., Rodríguez H. // Braz. J. Phys. 2006. V. 36. № 3b. P. 1017. https://doi.org/10.1590/S0103-97332006000600058
- Belysheva T.V., Gatin A.K., Grishin M.V., Ikim M.I., Matyuk V.M., Sarvadii S.Y., Trakhtenberg L.I., Shub B.R. // Russ. J. Phys. Chem. B. 2015. V. 9. № 5. P. 733. https://doi.org/10.1134/S1990793115050048
- Landau L.D., Lifshitz E.M. Course of theoretical physics. Statistical physics. Oxford: Butterworth-Heinemann, 1980.
- Pines D. Elementary excitations in solids. New York: W.A. Benjamin, 1963.
- Gerasimov G.N., Ikim M.I., Gromov V.F. et al. // Russ. J. Phys. Chem. A. 2015. V. 89. № 6. P. 1059. https://doi.org/10.1134/S0036024415060126
- Hernández-Arteaga J.G.R., Moreno-García H., Rodríguez A.G. // Thin Solid Films. 2021. V. 724. P. 138602. https://doi.org/10.1016/j.tsf.2021.138602
- Kurmangaleev K.S., Ikim M.I., Kozhushner M.A., Trakhtenberg L.I. // Appl. Surf. Sci. 2021. V. 546. P. 149011. https://doi.org/10.1016/j.apsusc.2021.149011
- Bondarenko V.B., Kuz’min M.V., Mittsev M.A. // Physics of the Solid State. 2001. V. 43. P. 1172. https://doi.org/10.1134/1.1378162
- Novozhilov V.B., Bodneva V.L., Kurmangaleev K.S., Lidskii B.V., Posvyanskii V.S., Trakhtenberg L.I. // Mathematics. 2023. V. 11. № 9. P. 2214. https://doi.org/10.3390/math11092214
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted##




