Microwave properties of magnetically structured composite materials based on elastomeric matrices

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Composite materials based on elastomeric matrices (chloroprene rubber of sulfur regulation and cold-cured polydimethylsiloxane) and magnetic fillers were obtained: hard magnetic (SmCo, NdFeB) and soft magnetic (natural magnetite Fe3O4, ZnNiCo ferrite) in the concentration range of 30–100 mass parts per 100 mass parts of the elastomeric matrix. The samples were molded both in the presence of a magnetic field up to 0.3 T and without it. As a result of studying the effect of structuring on the amplitude-frequency characteristics of the reflection coefficient (R) of samples in the frequency band 17.44–25.86 GHz, it was found that the amplitude and position of the of the attenuated R bands are determined by the composite formulation, and within the framework of one formulation, the anisotropy of the magnetization of the composite, which is determined by the nature of the distribution of the magnetic filler in the elastomeric matrix.

作者简介

A. Fionov

Kotelnikov Institute of Radio Engineering and Electronics

Email: asfionov@gmail.com
Moscow, Russia

A. Khachaturov

MIREА – Russian Technological University

Email: asfionov@gmail.com
Moscow, Russia

V. Fionova

Bauman Moscow State Technical University (National Research University)

Email: asfionov@gmail.com
Moscow, Russia

A. Kholodkova

MIREА – Russian Technological University

Email: asfionov@gmail.com
Moscow, Russia

V. Kolesov

Kotelnikov Institute of Radio Engineering and Electronics

Email: asfionov@gmail.com
Moscow, Russia

E. Potapov

MIREА – Russian Technological University

编辑信件的主要联系方式.
Email: asfionov@gmail.com
Moscow, Russia

参考

  1. Tiwari M., Arya M.A., More P.V. et al. // J. Nanosci. Nanotechnol. 2020. V. 20. № 5. P. 2847. https://doi.org/10.1166/jnn.2020.17474
  2. Жуков А.М., Солодилов В.И., Третьяков И.В. и др. // Хим. физика. 2022. Т. 41. № 9. С. 64. https://doi.org/10.31857/S0207401X22090138
  3. Кириллов В.Е., Юрков Г.Ю., Коробов М.С. и др. // Хим. физика. 2023. Т. 42. № 11. С. 39. https://doi.org/10.31857/S0207401X23110043
  4. Robertsam A, Jaya N.V. // J. Nanosci. Nanotechnol. 2020. V. 20. № 6. P. 3504. https://doi.org/10.1166/jnn.2020.17404
  5. Deka B., Lee Y.-W., Yoo I.-R. et al. // Appl. Phys. Lett. 2019. V. 115. Article 192901. https://doi.org/10.1063/1.5128163
  6. Сvek M., Moucka R., Sedlacik M. et al. // Smart Mater. Struct. 2017. V. 26. P. 095005. https://doi.org/10.1088/1361-665X/aa7ef6
  7. Fionov A., Kraev I., Yurkov G. et al. // Polymers. 2022. V. 14. P. 3026. https://doi.org/10.3390/polym14153026.
  8. Хачатуров А.А., Фионов А.С., Колесов В.В. и др. // РЭНСИТ: Радиоэлектроника. Наносистемы. Информ. технологии. 2022. Т. 14. № 4. С. 415. https://doi.org/10.17725/rensit.2022.14.415
  9. Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз, 1963.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025