Management of asthenic patients after COVID-19


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Patients with COVID-19 report lack of vitality. This condition is caused by severe hypoxia. Tissue hypoxia is affected by a novel class of drugs called partial fatty acid oxidation (p-FOX) inhibitors; its international nonproprietary name is meldonium. Objective: to evaluate the efficiency of using Meldonium Organika capsules 500 mg in relieving asthenic syndrome in post-COVID-19 patients. Subjects and methods. A total of 128 patients (59 men and 69 women) aged 51 to 54 years were followed up; 52.3% of them complained of chronic, persistent, severe fatigue. A study group included 30 patients with asthenic syndrome lasting at least 2 months; in addition to the standard therapy, the patients took an oral 500-mg Meldonium Organika capsule twice daily for 3 months according to the management protocol for post-COVID-19 patients. The comparison group included patients (n=30) who received stable therapy according to the protocol of a patient’s mindset who underwent COVID-19 with concomitant somatic and neurological pathology that complicates the study; the presence of a history of severe allergic reactions and autoimmune diseases in patients, viral forms of hepetitis (including the carrier of viruses), as well as acute infectious diseases during the 4 weeks preceding blood sampling. Results and discussion. The clinical neurological picture was determined by the involvement of the central mechanisms that regulate the somatosensory system in the pathological process. Before treatment, the patients in the study group had MFI-20 scores of 15.3±0.2; those in the comparison group had 15.2±0.2 scores. After the end of treatment, the study group showed a significant improvement in 26 (86.7%) patients; the mean MFI-20 score was 9.7±1.6 (p<0.01); the comparison group had improvements only in 2 (6.7%) patients; the mean score was 14.6±1.2 (p<0.05). Thirty days after the end of therapy, the mean MFI-20 score was 10.7±0.8 in the study group (p<0.01); in the comparison group, the scores did not change from the baseline ones (15.1±0.2) (p<0.05). Conclusion. The multilevel nature of the nervous system lesion in COVID-19 has been revealed, which requires the choice of individual therapy. The investigation shows that it is expedient to incorporate 500-mg Meldonium Organika capsules for the therapy of asthenic syndrome in post-COVID-19 patients.

Full Text

Restricted Access

About the authors

M. G Zhestikova

Novokuznesk State Institute for Postgraduate Training of Physicians, Branch, Russian Medical Academy of Continuing Professional Education

Email: mgzh@yandex.ru
Associate Professor, Candidate of Medical Sciences

M. Yu Gerasimenko

Russian Medical Academy of Continuing Professional Education

Email: mgzh@yandex.ru
Professor, MD

S. L Kan

Novokuznesk State Institute for Postgraduate Training of Physicians, Branch, Russian Medical Academy of Continuing Professional Education

Email: mgzh@yandex.ru
Associate Professor, MD

V. A Minenkov

Novokuznesk State Institute for Postgraduate Training of Physicians, Branch, Russian Medical Academy of Continuing Professional Education

Email: mgzh@yandex.ru
Candidate of Medical Sciences

T. P Aikina

Novokuznesk State Institute for Postgraduate Training of Physicians, Branch, Russian Medical Academy of Continuing Professional Education

Email: mgzh@yandex.ru

References

  1. Coronavirus disease 2019 (COVID-19). World Health Organization Situation Report. URL: https://www.who.int/docs/default-source/coronaviruse/ situation-reports/20200305-sitrep-45-covid-19.pdf (дата обращения 17.04.2020).
  2. COVID-19 Strategy Update. World Health Organization. URL: https://www. who.int/publications-detail/covid-19-strategy-update-14-april-2020 (дата обращения 14.04.2020).
  3. Harvey B.H., Oosthuizen F., Brand L. et al. Stress-restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus. Psychopharmacology. 2004; 175: 494-502. doi: 10.1007/s00213-004-1836-4
  4. Старшинова А.А., Кушнарева Е.А., Малкова А.М. и др. Новая коронавирусная инфекция: особенности клинического течения, возможности диагностики, лечения и профилактики инфекции у взрослых и детей. Вопросы современной педиатрии. 2020; 19 (2): 123-31
  5. Логунова Л.В. Новые аспекты в использовании Милдроната для профилактики и коррекции нарушений адаптационных процессов. Вестник РУДН. Серия: Медицина. 2009; 1: 81-8
  6. Негода С.В., Стаценко М.Е., Туркина С.В. и др. Влияние терапии Милдронатом на когнитивные функции у больных пожилого возраста с артериальной гипертензией. Кардиоваскулярная терапия и профилактика. 2012; 11 (5): 33-8
  7. Попова О.В., Циркин В.И., Нуреев И.Т. Влияние Милдроната на состояние центральной нервной системы у студентов с признаками синдрома дефицита внимания с гиперактивностью. Вестник ННГУ. 2010; 6: 105-12
  8. Ochsner K., Gross J. Cognitive emotion regulation: insights from social cognitive and affective neuroscience. Curr Dir Psychol Sci. 2008; 17: 153-8. doi: 10.1111/j.1467-8721.2008.00566.x
  9. Самородская И.В. Мельдоний: обзор результатов исследований. РМЖ. 2013; 36: 1818-22
  10. Верткин А.Л., Ховасова Н.О. Коморбидность - новая патология. Технологии ее профилактики и лечения. Арх внутр мед. 2013; 4: 68-74
  11. Morin D., Hauet T., Spedding М. et al. Mitochondria as target for antiischemic drugs. Adv Drug Deliv Rev. 2001; 49: 151-74. doi: 10.1016/s0169-409x(01)00132-6
  12. Котов С.В., Исакова Е.В., Волченкова Т.В. и др. Эффективность применения мельдония в остром периоде ишемического инсульта. Альманах клинической медицины. 2015; 39: 75-80
  13. Рождественский Д.А., Доценко Э.А., Бобков Ю.Я. Мельдоний-Мик® и Милдронат®: Особенности фармакологического действия и эквивалентность. Лечебное дело. 2011; 6 (22): 47-51
  14. Задионченко В.С., Шехян Г.Г., Ялымов А.А. Место мельдония в метаболической цитопротекции. РМЖ. 2013; 9: 448-53
  15. Dzerve V. MILSS I Study Group. A dose-dependent improvement in exercise tolerance in patients with stable angina treated with mildronate: a clinical trial «MILSS I». Medicina (Kaunas). 2011; 47 (10): 544-51. DOI: 10.3390/ medicina47100078
  16. Ramsay R.R., Gandour R.D., van der Leij F.R. Molecular enzymology of carnitine transfer and transport. Biochim Biophys Acta. 2001; 1546: 21-43. doi: 10.1016/s0167-4838(01)00147-9
  17. Наумова Э.М., Борисова О.Н., Беляева Е.А. и др. Программы адаптации в профессиональном спорте и принципы их коррекции. Вестник новых медицинских технологий. 2016; 23 (2): 240-9
  18. Rebouche C.J. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann NY Acad Sci. 2004; 1033: 30-41. DOI: 10.1196/ annals.1320.003

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies