Organizational and management solutions to control the spread of COVID-19


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The progressive spread of the COVID-19 pandemic has required the urgent development of temporary clinical recommendations for the treatment of patients, as well as algorithms for hospitalization, and protocols for laboratory and clinical examinations. In addition, the important health care tasks are to implement organizational measures aimed at mitigating the spread of the infection, such as the introduction of quarantine measures, a mask regime, vaccination, and the standardization of testing methods for coronavirus infection. The purpose of this review is to consider the existing methods and algorithms for the implementation of the above measures. The paper considers the temporary clinical recommendations of the Ministry of Health of Russia for the prevention, containment, diagnosis, and treatment of the novel coronavirus infection, as well as the published studies of testing methods for COVID-19, the results of clinical trials of drugs used in its treatment, and independent reviews of some of the currently presented vaccines. Based on the described methods and approaches, conclusions are drawn about the inconsistency of the effectiveness of various treatment approaches, hospitalization algorithms, and organizational measures.

Full Text

Restricted Access

About the authors

A. O Trunin

Moscow Institute of Physics and Technology (National Research University)

I. K Chudinov

Moscow Institute of Physics and Technology (National Research University)

V. O Lebedeva

Moscow Institute of Physics and Technology (National Research University)

D. A Aleshina

Moscow Institute of Physics and Technology (National Research University)

A. A Ilina

Moscow Institute of Physics and Technology (National Research University)

Ya. E Shirobokov

Samara State Medical University, Ministry of Health of Russia

A. V Melerzanov

Moscow Institute of Physics and Technology (National Research University); N.A. Semashko National Research Institute of Public Health

Email: melerzanov.av@mipt.ru

References

  1. Cowling B.J. et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health. 2020; 5: 279-88. doi: 10.1101/2020.03.12.20034660
  2. Ghosh A., Nundy S., Mallick T.K. How India is dealing with COVID-19 pandemic. Sensors International. 2020; 1: 100021. doi: 10.1016/j.sintl.2020.100021
  3. India under COVID-19 lockdown. Lancet. 2020; 395 (10233): 1315. doi: 10.1016/S0140-6736(20)30938-7. URL: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30938-7/fulltext
  4. Meunier T.A.J. Full lockdown policies in Western Europe countries have no evident impacts on the COVID-19 epidemic. MedRxiv. 2020. doi: 10.1101/2020.04.24.20078717
  5. Xiao Y., Torok M.E. Taking the right measures to control COVID-19. Lancet Infect Dis. 2020; 5: 523-24. doi: 10.1016/s1473-3099(20)30152-3. URL: https://www.thelancet.com/article/S1473-3099(20)30152-3/fulltext
  6. Howard J. et al. An evidence review of face masks against COVID-19. Proc Nat Acad Sci. 2021; 118 (4). e2014564118. doi: 10.1073/pnas.2014564118.
  7. Борисевич С.В., Сизикова Т.Е., Лебедев В.Н. Пандемия COVID-19: анализ возможных сценариев развития эпидемии заболевания в России. Вестник войск РХБ защиты. 2020; 4 (2): 116-30 doi: 10.35825/2587-5728-2020-4-2-116-130
  8. Матвеев А.В. Математическое моделирование оценки эффективности мер против распространения эпидемии COVID-19. Национальная безопасность и стратегическое планирование. 2020; 1: 23-39 doi: 10.37468/2307-1400-2020-1-23-39
  9. Применение масок в условиях COVID-19. Временные рекомендации всемирной организации здравоохранения [Interim recommendations of the World Health Organization (in Russ)]. URL https://apps.who.int/iris/bitstream/handle/10665/337199/WHO-2019-nCov-IPC_Masks-2020.5-rus.pdf
  10. Sickbert-Bennett E.E. et al. Filtration efficiency of hospital face mask alternatives available for use during the COVID-19 pandemic. JAMA Intern Med. 2020; 180 (12): 1607-12. doi: 10.1001/jamainternmed.2020.4221
  11. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19) Министерства здравоохранения Российской Федерации (Версия 10) URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/Временные_МР_COVID-19_%28v.W%29-08.02.2021_%281%29.pdf
  12. Анциферов М.Б. и др. Клинический протокол лечения больных новой коронавирусной инфекцией COVID-19. Под ред. А.И. Хрипуна М.: ГБУ «НИИОЗММ ДЗМ; 2020.
  13. Гайсенок О.В. Применение ингибиторов вирусных РНК-полимераз в сочетании с ингибитором фузии в лечении пациентов с COVID-19: гипотеза. Вопросы вирусологии. 2020; 65 (3): 167-75 doi: 10.36233/0507-4088-2020-65-3-167-175
  14. Козлов В.А., Савченко А.А., Кудрявцев И.В. и др. Клиническая иммунология. Красноярск: Поликор, 2020; 386 с. doi: 10.17513/np.438
  15. Coomes E.A., Haghbayan H. Favipiravir, an antiviral for COVID-19? J. Antimicrob Chemother. 2020; 75 (7): 2013-4. doi: 10.1093/jac/dkaa171
  16. Ghasemnejad-Berenji M., Pashapour S. Favipiravir and COVID-19: a simplified summary. Drug Res (Stuttg). 2021; 71 (3): 166-70. doi: 10.1055/a-1296-7935
  17. Udwadia Z. F. et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J. Infect Dis. 2021; 103: 62-71. doi: 10.1016/j.ijid.2020.11.142
  18. Sinha N., Balayla G. Hydroxychloroquine and COVID-19. Postgrad Med. 2020; 96 (1139): 550-5. doi: 10.1136/postgradmedj-2020-137785
  19. Meo S.A., Klonoff D.C., Akram J. Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci. 2020; 24 (8): 4539-47. doi: 10.26355/eurrev_202004_21038
  20. Boulware D.R. et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N. Engl J. Med. 2020; 383 (6): 517-25. doi: 10.1056/NEJMoa2016638
  21. Протокол лечения COVID-19 медицинского центра МГУ [The protocol of treatment of COVID-19 of the MSU medical center (in Russ)]. URL: http://www.mc.msu.ru/protokol-mnoc.pdf
  22. Мареев В.Ю. и др. ПУльс-Терапия стероидными гормоНамИ больных с Коронавирусной пневмонией (COVID-19), системным воспалением и риском венозных тромбозов и тромбоэмболий (исследование ПУТНИК). Кардиология. 2020; 60 (6): 15-29 doi: 10.18087/cardio.2020.6.n1226
  23. Erensoy S. SARS-CoV-2 and Microbiological Diagnostic Dynamics in COVID-19 Pandemic. Mikrobiyol bul. 2020; 54 (3): 497-509. DOI: 10.5578/ mb.69839
  24. Zitek T. The appropriate use of testing for COVID-19. West J. Emerg Med. 2020; 21 (3): 470. doi: 10.5811/westjem.2020.4.47370
  25. Cheng M.P. et al. Diagnostic testing for severe acute respiratory syndrome-related coronavirus 2: a narrative review. Ann Intern Med. 2020; 172 (11): 726-34. doi: 10.7326/M20-1301
  26. Chau C.H., Strope J.D., Figg W.D. COVID-19 Clinical Diagnostics and Testing Technology. Pharmacotherapy. 2020; 40 (8): 857-68. DOI: 10.1002/ phar.2439
  27. Deeks J.J. et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev. 2020; 6: CD013652. doi: 10.1002/14651858.CD013652
  28. Tregoning J.S. et al. Vaccines for COVID-19. Clin Exp Immunol. 2020; 202 (2): 162-92. doi: 10.1111/cei.13517
  29. Chung J.Y., Thone M.N., Kwon Y.J. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug DelivRev. 2021; 170: 1-25. doi: 10.1016/j.addr.2020.12.011
  30. Гудима Г.О., Хаитов Р.М., Кудлай Д.А. и др. Молекулярноиммунологические аспекты диагностики, профилактики и лечения коронавирусной инфекции. Иммунология. 2021; 42 (3): 198-210 doi: 10.33029/0206-4952-2021-42-3-198-210
  31. Korber B. et al. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020; 182 (4): 812-27. doi: 10.1016/j.cell.2020.06.043
  32. Yu H.Q., Sun B.Q., Fang Z.F. et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur Respir J. 2020; 56 (2): 2001526. doi: 10.1183/13993003.01526-2020
  33. Weissman D. et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe. 2021; 29 (1): 23-31. doi: 10.1016/j.chom.2020.11.012

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies