The significance of radial endosonography of the lung parenchyma in the bronchoscopic diagnosis of peripheral pulmonary lesions of tuberculous genesis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The minimally invasive differential diagnosis of peripheral pulmonary lesions (PPLs) is an urgent clinical problem, especially in high tuberculosis (TB) burden countries. Objective: to evaluate the comparative effectiveness of bronchoscopic biopsies with radial endobronchial ultrasonography (rEBUS navigation) and biopsies in conventional bronchoscopy (BS) with computed tomography (CT)-guided navigation in the diagnosis of PPLs of non-cancer genesis. Subjects and methods. The investigation enrolled 158 patients (78 males, 80 females) with PPLs, as evidenced by chest CT (CCT), and with a negative sputum microbiological test for Mycobacterium tuberculosis. The patients were divided into 2 groups: 1) 82 patients undergoing BS with rEBUS navigation; 2) 76 patients having BS with CT-guided navigation. For a comprehensive microbiological and cytomorphological study after rEBUS navigation, the patients underwent bronchoalveolar lavage (BAL) (n=121), brush biopsy (n=103), bronchial washings (n=31), and transbronchial lung biopsy (n=25). Results. The diagnosis of TB was verified with BS in 103 (65.2%) patients; it was significantly more often in the samples from the patients undergoing rEBUS navigation than from those having CT-guided navigation (80.5% vs. 48.7% of cases, respectively; p<0.01). The addition of rEBUS navigation to BS with CT-guided navigation could increase the verification of TB: from 15.8% to 54.9% with microscopy (p<0.01), from 43.4% to 69.5% with the diagnosis with polymerase chain reaction (p<0.01), from 38.2% to 67.1% with a culture method (p<0.01) with the most effective diagnosis in the samples using BAL (36.2% vs. 59.6%; p<0.05) and cytological brushes (32.5% vs. 61.2%; p<0.01). Conclusion. The use of rEBUS navigation with BS increases TB diagnosis by 25-30%.

Full Text

Restricted Access

About the authors

I. Yu Shabalina

Central Research Institute of Tuberculosis

Candidate of Medical Sciences

Yu. V Turovtseva

Central Research Institute of Tuberculosis

A. I Popova

Central Research Institute of Tuberculosis

T. G Smirnova

Central Research Institute of Tuberculosis

Candidate of Medical Sciences

E. E Larionova

Central Research Institute of Tuberculosis

Candidate of Biological Sciences

N. L Karpina

Central Research Institute of Tuberculosis

MD

A. E Ergeshov

Central Research Institute of Tuberculosis

Professor

References

  1. Гомболевский В.А., Чернина В.Ю., Блохин И.А. и др. Основные достижения низкодозной компьютерной томографии в скрининге рака легкого. Туберкулез и болезни легких. 2021; 99 (1): 61-70 doi: 10.21292/2075-1230-2021-99-1-61-70
  2. Эргешов А.Э. Туберкулез в Российской Федерации: ситуация, проблемы и перспективы. Вестник Российской академии медицинских наук. 2018; 73 (5): 330-7 doi: 10.15690/vramn1023
  3. Atkins N.K., Marjara J., Kaifi J.T. et al. Role of Computed Tomography-guided Biopsies in the Era of Electromagnetic Navigational Bronchoscopy: A Retrospective Study of Factors Predicting Diagnostic Yield in Electromagnetic Navigational Bronchoscopy and Computed Tomography Biopsies. J. Clin Imaging Sci. 2020; 10: 33. doi: 10.25259/JCIS_53_2020
  4. Herth F.J., Ernst A., Becker H.D. Endobronchial ultrasound-guided transbronchial lung biopsy in solitary pulmonary nodules and peripheral lesions. Eur Respir J. 2002; 20: 972-4. doi: 10.1183/09031936.02.00032001
  5. Kurimoto N., Miyazawa T., Okimasa S. et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest. 2004; 126: 959-65. doi: 10.1378/chest.126.3.959
  6. Chan A., Devanand A., Low S.Y. et al. Radial endobronchial ultrasound in diagnosing peripheral lung lesions in a high tuberculosis setting. BMC Pulm Med. 2015; 15: 90. doi: 10.1186/s12890-015-0089-9
  7. Lai R.S., Lee S.S., Ting Y.M. et al. Diagnostic value of transbronchial lung biopsy under fluoroscopic guidance in solitary pulmonary nodule in an endemic area of tuberculosis. Respir Med. 1996; 90 (3): 139-43. doi: 10.1016/s0954-6111(96)90155-9
  8. Chung Y.H., Lie C.H., Chao T.Y. et al. Endobronchial ultrasonography with distance for peripheral pulmonary lesions. Respir Med. 2007; 101: 738-45. doi: 10.1016/j.rmed.2006.08.014
  9. Moon S.M., Choe J., Jeong B.H. et al. Diagnostic Performance of Radial Probe Endobronchial Ultrasound without a GuideSheath and the Feasibility of Molecular Analysis. Tuberc Respir Dis. 2019; 82 (4): 319-27. doi: 10.4046/trd.2018.0082
  10. Мамаев А.Н., Кудлай Д.А. Статистические методы в медицине. М.: Практическая медицина, 2021; 136 с.
  11. Lin S.M. et al. Diagnostic value of endobronchial ultrasonography for pulmonary tuberculosis. J. Thorac Cardiovasc Surg. 2009; 138 (1): 179-84. doi: 10.1016/j.jtcvs.2009.04.004
  12. Lin S.M., Ni Y.L., Kuo C.H. et al. Endobronchial ultrasound increases the diagnostic yields of polymerase chain reaction and smear for pulmonary tuberculosis. J. Thorac Cardiovasc Surg. 2010; 139 (6): 1554-60. DOI: 10.1016/j. jtcvs.2010.02.019
  13. Bodal V.K., Bal M.S., Bhagat S. et al. Fluorescent microscopy and Ziehl-Neelsen staining of bronchoalveolar lavage, bronchial washings, bronchoscopic brushing and post bronchoscopic sputum along with cytological examination in cases of suspected tuberculosis. Indian J. Pathol Microbiol. 2015; 58 (4): 443-7. doi: 10.4103/0377-4929.168849
  14. Liu X., Hou X.F., Gao L.et al. Indicators for prediction of Mycobacterium tuberculosis positivity detected with bronchoalveolar lavage fluid. J. Infect Dis Poverty. 2018; 7 (1): 22. doi: 10.1186/s40249-018-0403-x
  15. Ahmad M., Ibrahim W.H., Sarafandi S.A. Diagnostic value of bronchoalveolar lavage in the subset of patients with negative sputum/smear and mycobacterial culture and a suspicion of pulmonary tuberculosis. Int J. Infect Dis. 2019; 82: 96-101. doi: 10.1016/j.ijid.2019.03.02113
  16. Севастьянова Э.В., Пузанов В.А., Смирнова Т.Г. и др. Оценка комплекса микробиологических и молекулярно-генетических методов исследования для диагностики туберкулеза. Туберкулез и болезни легких. 2015; 1: 35-41 doi: 10.21292/20751230-2015-0-1-35-41
  17. To K.W., Kam K.M., Chan D.P.C. et al. Utility of GeneXpert in analysis of bronchoalveolar lavage samples from patients with suspected tuberculosis in an intermediate-burden setting. J. Infect. 2018; 77 (4): 296-301. DOI: 10.1016/j. jinf.2018.06.011
  18. Карпина Н.Л., Асанов Р.Б., Шишкина Е.Р. и др. Современный взгляд на диагностические ошибки при полостных образованиях в легких. Врач. 2021; 32 (2): 32-7 doi: 10.29296/25877305-2021-02-06
  19. Kim Y.W., Kwon B.S., Lim S.Y. et al. Diagnostic value of bronchoalveolar lavage and bronchial washing in sputum-scarce or smear-negative cases with suspected pulmonary tuberculosis: a randomized study. Clin Microbiol Infect. 2020; 26 (7): 911-6. doi: 10.1016/j.cmi.2019.11.013
  20. Boonsarngsuk V., Suwannaphong S., Laohavich C. Combination of adenosine deaminase activity and polymerase chain reaction in bronchoalveolar lavage fluid in the diagnosis of smear-negative active pulmonary tuberculosis. Int J. Infect Dis. 2012; 16: 663-8. doi: 10.1016/j.ijid.2012.05.006
  21. Kumar R., Singh M., Gupta N. et al. Bronchoscopy in immediate diagnosis of smear negative tuberculosis. Pneumonol Alergol Pol. 2014; 82 (5): 410-4. doi: 10.5603/PiAP.2014.0053

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies