Functional activity of the gut microbiota, adipose tissue, and incretins in childhood obesity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Obesity is a multifactorial disease. The action of the gut microbiota on human metabolic health is currently being actively studied. The literature describes many mechanisms of this action, the main mechanism is the synthesis of short-chain fatty acids (SCFA) that are ligands of GPR41 and GPR43 receptors for the synthesis of many hormones (insulin, glucagon, leptin, and irisin). Objective: to study the metabolic activity of the colonic microbiota and its relationship to the secretion of adipose tissue hormones, incretins in obese and overweight children. The investigation involved 74 children and adolescents with overweight and obesity, as well as 44 healthy children matched for age and sex. Over the course of the investigation, data were obtained on a decrease in the activity of hormones (irisin, resistin, glucagon, GLP-1, and GLP-2) in the presence of the lower metabolic activity of the microbiota, while the overweight and obese children showed a positive correlation with the main hormones and incretins. The reduced metabolic function of the microbiota, largely in synthesizing butyric acid, may be associated with a low indigestible fiber diet for obese and overweight children and also indirectly suggests that there may be a small number of butyrate-producing bacteria and/or their low activity. The mechanisms and direction of correlations between the functional activity of the gut microbiota, the gastrointestinal system, and some adipokines require further understanding and research.

Full Text

Restricted Access

About the authors

Yu. G. Samoilova

Siberian State Medical University, Ministry of Health of Russia

Email: oleynikoa@mail.ru

доктор медицинских наук, профессор

E. V. Sagan

Siberian State Medical University, Ministry of Health of Russia

Email: oleynikoa@mail.ru

O. A. Oleynik

Siberian State Medical University, Ministry of Health of Russia

Author for correspondence.
Email: oleynikoa@mail.ru

кандидат медицинских наук, доцент

D. A. Kudlay

I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia; State Research Center “Institute of Immunology’, Federal Biomedical Agency of Russia

Email: oleynikoa@mail.ru

член-корреспондент РАН, доктор медицинских наук

M. V. Matveeva

Siberian State Medical University, Ministry of Health of Russia

Email: oleynikoa@mail.ru

доктор медицинских наук

D. V. Podchinenova

Siberian State Medical University, Ministry of Health of Russia

Email: oleynikoa@mail.ru

кандидат медицинских наук, доцент

M. A. Kovarenko

Siberian State Medical University, Ministry of Health of Russia

Email: oleynikoa@mail.ru

кандидат медицинских наук

I. N. Vorozhtsova

Siberian State Medical University, Ministry of Health of Russia

Email: oleynikoa@mail.ru

доктор медицинских наук, профессор

O. A. Pavlenko

Siberian State Medical University, Ministry of Health of Russia

Email: oleynikoa@mail.ru

доктор медицинских наук, профессор

References

  1. Петеркова В.А., Безлепкина О.Б., Болотова Н.В. и др. Клинические рекомендации «Ожирение у детей». Проблемы эндокринологии. 2021; 67 (5): 67-83. doi: 10.14341/probl12802
  2. Васюкова О.В. Ожирение у детей и подростков: критерии диагноза. Ожирение и метаболизм. 2019; 16 (1): 70-3. doi: 10.14341/omet10170
  3. Савчук Д.В., Шин В.Ф., Теплякова Е.Д. и др. Кишечная микробиота и ее взаимосвязь с ожирением у детей. Вопросы детской диетологии. 2019; 17 (5): 54-61. doi: 10.20953/1727-5784-2019-5-54-61
  4. Гурова М.М., Новикова В.П., Хавкин А.И. Состояние кишечной микробиоты и клинико-метаболические особенности у детей с избыточной массой тела и ожирением. Доказательная гастроэнтерология. 2018; 7 (3): 4-10. doi: 10.17116/dokgastro201870314
  5. Корниенко Е.А., Нетребенко О.К. Ожирение и кишечная микробиота: современная концепция взаимосвязи. Педиатрия. Журнал им. Г.Н. Сперанского. 2012; 91 (2): 110-22.
  6. Иконников Н.С., Ардатская М.Д., Бабин В.Н. и др. Патент на изобретение РФ №2145511 «Способ разделения смеси жирных кислот фракции С2-С7 методом газожидкостной хроматографии» от 09.04.1999. URL: http://www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&rn=8868&DocNumber=2145511&TypeFile=html
  7. Захарова И.Н., Бережная И.В., Скоробогатова Е.В. и др. Микробиота кишечника у детей с ожирением. Роль пробиотиков. Медицинский совет. 2020; 10: 134-42. doi: 10.21518/2079-701X-2020-10-134-142
  8. Dahiya D.K., Renuka Puniya M., Shandilya U.K. et al. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Front Microbiol. 2017; 8: 563. doi: 10.3389/fmicb.2017.00563
  9. Rahat-Rozenbloom S., Fernandes J., Gloor G.B. et al. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J. Obes (Lond). 2014; 38 (12): 1525-31. doi: 10.1038/ijo.2014.46
  10. Kasubuchi M., Hasegawa S., Hiramatsu T. et al. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015; 7 (4): 2839-49. doi: 10.3390/nu7042839
  11. Fredborg M., Theil P.K., Jensen B.B. et al. G. protein-coupled receptor120 (GPR120) transcription in intestinal epithelial cells is significantly affected by bacteria belonging to the Bacteroides, Proteobacteria, and Firmicutes phyla. J. Anim Sci. 2012; 90 (Suppl 4): 10-2. doi: 10.2527/jas.53792
  12. Karlsson F.H., Tremaroli V., Nookaew I. e al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013; 498 (7452): 99-103. doi: 10.1038/nature12198
  13. Bomhof M.R., Saha D.C., Reid D.T. et al. Combined effects of oligofructose and Bifidobacterium animalis on gut microbiota and glycemia in obese rats. Obesity (Silver Spring). 2014; 22 (3): 763-71. doi: 10.1002/oby.20632
  14. De La Serre C.B., de Lartigue G., Raybould H.E. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiol Behav. 2015; 139: 188-94. doi: 10.1016/j.physbeh.2014.10.032
  15. Schroeder B.O., Birchenough G.M.H., Stahlman M. et al. Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host Microbe. 2018; 23 (1): 27-40.e7. doi: 10.1016/j.chom.2017.11.004
  16. Самойлова Ю.Г., Олейник О.А., Саган Е.В. и др. Микробиота и метаболическое программирование ожирения у детей. Педиатрия. Журнал им. Г.Н. Сперанского. 2020; 99 (1): 209-16. doi: 10.24110/0031-403x-2020-99-1-209-216
  17. Bauer P.V., Hamr S.C., Duca F.A. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci. 2016; 73 (4): 737-55. doi: 10.1007/s00018-015-2083-z
  18. Ардатская М.Д. Клиническое значение короткоцепочечных жирных кислот при патологии желудочно-кишечного тракта, Дисс. д-ра мед. наук. М., 2003; 299 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A plot of the distribution of patients by gender and age subgroups

Download (209KB)
3. Fig. 2. The relationship between the indicators of metabolic activity of the microbiota and some hormones in the examined groups.

Download (689KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies