The use of selenium-containing drugs in the prevention and treatment of complications in patients with COVID-19

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To study literature data reflecting the use of selenium (Se) and selenium-containing drugs in the complex prophylaxis and treatment of complications in patients with COVID-19.

Material and methods. Data analysis of 37 publications of scientists from Russian Federation, United States of America, People's Republic of China, Great Britain, India, France, Germany, Italy, Sweden, Canada, Brazil, United Arab Emirates, Saudi Arabia, Ireland, Holland, Greece, Australia, Poland, Pakistan, Sudan, Nepal was performed. The authors reflected on the epidemiology, diagnosis, pathogenesis, clinic, risk of acute respiratory distress syndrome, multiple organ failure, cardiovascular complications, mortality in patients with COVID-19, the importance of Se deficiency in the body and the preventive use of selenium-containing drugs in novel coronavirus infection.

Results. Low dietary Se intake was associated with the development of acute respiratory distress syndrome in men and women with COVID-19. Deficiencies were associated with increased risk of morbidity and mortality. Organic forms of Se had the best bioavailability. Se had antioxidant, anti-inflammatory, antithrombotic, antiviral, immunomodulatory effects in patients with COVID-19.

Conclusions. Thus, control and optimization of the selenium status in population of selenium-deficient areas with addition of Se-enriched food to the diet, as well as SELENBIO for women complex of Russian company "Parapharm" could be one of the directions of prevention and treatment of complications in patients with COVID-19.

Full Text

Restricted Access

About the authors

D. V. Dedov

Tver State Medical University; Tver Regional Clinical Cardiology Dispensary

Author for correspondence.
Email: dedov_d@inbox.ru
ORCID iD: 0000-0002-3922-3207

Doctor of Medical Sciences, Professor

Russian Federation, Tver; Tver

P. A. Poluboyarinov

Penza State University

Email: dedov_d@inbox.ru
ORCID iD: 0000-0001-9870-0272

Candidate of Agricultural Sciences

Russian Federation, Penza

A. V. Fedorov

Penza State Agrarian University

Email: dedov_d@inbox.ru
Russian Federation, Penza

References

  1. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации. М.: Минздрав России. 2022. 249с. [Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Provisional guidelines. M.: Ministry of Health of the Russian Federation, 2022; 249 p. (in Russ.)].
  2. Akaberi D., Krambrich J., Ling J. et al. Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro. Redox Biol. 2020; 37: 101734. doi: 10.1016/j.redox.2020.101734
  3. Yang M. Redox stress in COVID-19: Implications for hematologic disorders. Best Pract Res Clin Haematol. 2022; 35 (3): 101373. doi: 10.1016/j.beha.2022.101373
  4. Куропаткина Т.А., Медведева Н.А., Медведев О.С. Роль селена в кардиологии. Кардиология. 2021; 61 (3): 96–104 [Kuropatkina T.A., Medvedeva N.A., Medvedev O.S. The role of selenium in cardiology. Kardiologiia. 2021; 61 (3): 96–104 (in Russ.)]. doi: 10.18087/cardio.2021.3.n1186
  5. Shi W., Lv J., Lin L. Coagulopathy in COVID-19: Focus on vascular thrombotic events. J Mol Cell Cardiol. 2020; 146: 32–40. doi: 10.1016/j.yjmcc.2020.07.003
  6. Price-Haywood E.G., Burton J., Fort D. et al. Hospitalization and Mortality among Black Patients and White Patients with Covid-19. N Engl J Med. 2020; 382 (26): 2534–43. doi: 10.1056/NEJMsa2011686
  7. Ejaz H., Alsrhani A., Zafar A. et al. COVID-19 and comorbidities: Deleterious impact on infected patients. J Infect Public Health. 2020; 13 (12): 1833–9. doi: 10.1016/j.jiph.2020.07.014
  8. Behura A., Naik L., Patel S. et al. Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis. 2023; 1869 (3): 166634. doi: 10.1016/j.bbadis.2022.166634
  9. Mucalo L., Brandow A.M., Singh A. A perspective on the sickle cell disease international COVID-19 registry. Best Pract Res Clin Haematol. 2022; 35 (3): 101385. doi: 10.1016/j.beha.2022.101385
  10. Miesbach W., Makris M. COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation. Clin Appl Thromb Hemost. 2020; 26: 1076029620938149. doi: 10.1177/1076029620938149
  11. Zhang H., Lao Q., Zhang J. et al. Coagulopathy in COVID-19 and anticoagulation clinical trials. Best Pract Res Clin Haematol. 2022; 35 (3): 101377. doi: 10.1016/j.beha.2022.101377
  12. Sholzberg M., Tang G.H., Negri E. et al. Coagulopathy of hospitalised COVID-19: A Pragmatic Randomised Controlled Trial of Therapeutic Anticoagulation versus Standard Care as a Rapid Response to the COVID-19 Pandemic (RAPID COVID COAG - RAPID Trial): A structured summary of a study protocol for a randomised controlled trial. Trials. 2021; 22 (1): 202. doi: 10.1186/s13063-021-05076-0
  13. Obi A.T., Barnes G.D., Napolitano L.M. et al. Venous thrombosis epidemiology, pathophysiology, and anticoagulant therapies and trials in severe acute respiratory syndrome coronavirus 2 infection. J Vasc Surg Venous Lymphat Disord. 2021; 9 (1): 23–35. doi: 10.1016/j.jvsv.2020.08.030
  14. Rodriguez F., Solomon N., de Lemos J.A. et al. Racial and Ethnic Differences in Presentation and Outcomes for Patients Hospitalized With COVID-19: Findings From the American Heart Association's COVID-19 Cardiovascular Disease Registry. Circulation. 2021; 143 (24): 2332–42. doi: 10.1161/CIRCULATIONAHA.120.052278
  15. Terpos E., Ntanasis-Stathopoulos I., Elalamy I. et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020; 95 (7): 834–47. doi: 10.1002/ajh.25829
  16. Rodriguez M., Dai W., Lund H. et al. The correlations among racial/ethnic groups, hypertriglyceridemia, thrombosis, and mortality in hospitalized patients with COVID-19. Best Pract Res Clin Haematol. 2022; 35 (3): 101386. doi: 10.1016/j.beha.2022.101386
  17. Bunsawat K., Grosicki G.J., Jeong S. et al. Racial and ethnic disparities in cardiometabolic disease and COVID-19 outcomes in White, Black/African American, and Latinx populations: Physiological underpinnings. Prog Cardiovasc Dis. 2022; 71: 11–9. doi: 10.1016/j.pcad.2022.04.005
  18. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229): 1054–62. doi: 10.1016/S0140-6736(20)30566-3
  19. Ярошецкий А.И., Грицан А.И., Авдеев С.Н. и др. Диагностика и интенсивная терапия острого респираторного дистресс-синдрома (Клинические рекомендации Общероссийской общественной организации «Федерация анестезиологов и реаниматологов»). Анестезиология и реаниматология. 2020; 2: 5–39 [Yaroshetsky A.I., Gritsan A.I., Avdeev S.N. et al. Diagnostics and intensive therapy of Acute Respiratory Distress Syndrome (Clinical guidelines of the Federation of Anesthesiologists and Reanimatologists of Russia). Russian Journal of Anaesthesiology and Reanimatology. 2020; 2: 5–39 (in Russ.)]. doi: 10.17116/anaesthesiology20200215
  20. Guillin O.M., Vindry C., Ohlmann T. et al. Selenium, Selenoproteins and Viral Infection. Nutrients. 2019; 11 (9): 2101. doi: 10.3390/nu11092101
  21. Zhang J., Saad R., Taylor E.W. et al. Selenium and selenoproteins in viral infection with potential relevance to COVID-19. Redox Biol. 2020; 37: 101715. doi: 10.1016/j.redox.2020.101715
  22. Touat-Hamici Z., Legrain Y., Bulteau A.L. et al. Selective up-regulation of human selenoproteins in response to oxidative stress. J Biol Chem. 2014; 289 (21): 14750–61. doi: 10.1074/jbc.M114.551994
  23. Golin A., Tinkov A.A., Aschner M. et al. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol. 2023; 75: 127099. doi: 10.1016/j.jtemb.2022.127099
  24. Ali W., Benedetti R., Handzlik J. et al. The innovative potential of selenium-containing agents for fighting cancer and viral infections. Drug Discov Today. 2021; 26 (1): 256–63. doi: 10.1016/j.drudis.2020.10.014
  25. Fallahi P., Ferrari S.M., Elia G. et al. Thyroid autoimmunity and SARS-CoV-2 infection: Report of a large Italian series. Autoimmun Rev. 2022; 21 (11): 103183. doi: 10.1016/j.autrev.2022.103183
  26. Liu Q., Zhao X., Ma J. et al. Selenium (Se) plays a key role in the biological effects of some viruses: Implications for COVID-19. Environ Res. 2021; 196: 110984. doi: 10.1016/j.envres.2021.110984
  27. Alshammari M.K., Fatima W., Alraya R.A. et al. Selenium and COVID-19: A spotlight on the clinical trials, inventive compositions, and patent literature. J Infect Public Health. 2022; 15 (11): 1225–33. doi: 10.1016/j.jiph.2022.09.011
  28. Khatiwada S., Subedi A. A Mechanistic Link Between Selenium and Coronavirus Disease 2019 (COVID-19). Curr Nutr Rep. 2021; 10 (2): 125–36. doi: 10.1007/s13668-021-00354-4
  29. Shakoor H., Feehan J., Al Dhaheri A.S. et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas. 2021; 143: 1–9. doi: 10.1016/j.maturitas.2020.08.003
  30. Martinez S.S., Huang Y., Acuna L. et al. Role of Selenium in Viral Infections with a Major Focus on SARS-CoV-2. Int J Mol Sci. 2021; 23 (1): 280. doi: 10.3390/ijms23010280
  31. Lopes Junior E., Leite H.P., Konstantyner T. Selenium and selenoproteins: from endothelial cytoprotection to clinical outcomes. Transl Res. 2019; 208: 85–104. doi: 10.1016/j.trsl.2019.01.004
  32. Pedrosa L.F.C., Barros A.N.A.B., Leite-Lais L. Nutritional risk of vitamin D, vitamin C, zinc, and selenium deficiency on risk and clinical outcomes of COVID-19: A narrative review. Clin Nutr ESPEN. 2022; 47: 9–27. doi: 10.1016/j.clnesp.2021.11.003
  33. Дедов Д.В. Селен и селенсодержашие препараты: биологическое и фармакологическое действие на организм человека. Фармация. 2023; 72 (1): 5–8 [Dedov D.V. Selenium and selenium-containing preparations: biological and pharmacological effects on the human body. Pharmacy. 2023; 72 (1): 5–8 (in Russ.)]. doi: 10.29296/25419218-2023-01-01
  34. Полубояринов П.А., Воронин С.П., Егоров И.А. и др. Возможность использования селеноцистина в качестве источника селена. Птицеводство. 2015; 8: 9–12 [Poluboyarinov P.A., Voronin S.P., Egorov I.A. et al. The possibility of usage of selenocystine as a selenium source. Poultry farming. 2015; 8: 9–12 (in Russ.)].
  35. Полубояринов П.А., Моисеева И.Я., Глебова Н.Н., и др. Аналитические методы определения аминокислоты L-селеноцистина. Известия высших учебных заведений. Поволжский регион. Естественные науки. 2017; 2 (18): 30–6. [Poluboyarinov P.A., Moiseeva I.Ya., Glebova N.N. et al. Analytical methods of L-selenocystine determination. University proceedings. Volga region. Natural sciences. 2017; 2 (18): 30–6 (in Russ.)]. doi: 10.21685/2307-9150-2017-2-4
  36. Елистратов Д.Г. Остео-Вит D3 и селенбио фо вумен в профилактике COVID-19 и постковидных осложнений. Медицинская сестра. 2022; 24 (2): 46–51. [Elistratov D.G. Osteo-Vit D3 and Selenbio fo vomen in the prevention of COVID-19 and postvoid complications. Meditsinskaya sestra. 2022; 24 (2): 46–51 (in Russ.)]. doi: 10.29296/25879979-2022-02-11
  37. Моисеева И.Я., Сергеева-Кондраченко М.Ю., Струков В.И. и др. Изучение наиболее востребованных в пищевой и фармацевтической отраслях форм селена на предмет биодоступности и токсичности. Терапевт. 2022; 10 (185): 12–7. [Moiseeva I.Ya., Sergeeva-Kondrachenko M.Yu., Strukov V.I. et al. The study of the most popular forms of selenium in the food and pharmaceutical industries for bioavailability and toxicity Terapevt. 2022; 10 (185): 12–7 (in Russ.)]. doi: 10.33920/MED-12-2210-02

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies