Effects of SARS-CoV-2 on the endocrine system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper considers the publications that reports endocrine changes in patients with SARS-CoV-2 and SARS-CoV. In the electronic database PubMed, the investigators sought by using the terms of subject headings (MESH) associated with SARS-CoV, SARS-CoV-2 and different hormones. To search for the publications, the interval was taken from January 2002 and to the present time, since the outbreak of SARS-CoV occurred in 2002. The articles dealing with the outbreaks of both viruses were considered.

The viruses of the family SARS-CoV(-2) cause systemic diseases involving many organs. The patients are observed to have hormonal and metabolic disorders. There are data on the damaging effect of both SARS-CoV and SARS-CoV-2 on the pancreas and thyroid, adrenals and gonads.

Full Text

Restricted Access

About the authors

O. S. Kruglova

Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Author for correspondence.
Email: kruglovaos95@gmail.com
ORCID iD: 0000-0003-1041-6088
Russian Federation, Krasnoyarsk

I. V. Demko

Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Territorial Clinical Hospital

Email: kruglovaos95@gmail.com
ORCID iD: 0000-0001-8982-5292

Doctor of Medical Sciences, Professor

Russian Federation, Krasnoyarsk; Krasnoyarsk

E. A. Sobko

Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Territorial Clinical Hospital

Email: kruglovaos95@gmail.com
ORCID iD: 0000-0002-9377-5213

Doctor of Medical Sciences, Professor

Russian Federation, Krasnoyarsk; Krasnoyarsk

S. A. Geyl

Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: kruglovaos95@gmail.com
ORCID iD: 0000-0002-9492-2668
Russian Federation, Krasnoyarsk

Yu. A. Khramova

Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: kruglovaos95@gmail.com
ORCID iD: 0000-0002-6595-3000
Russian Federation, Krasnoyarsk

E. S. Mineeva

Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Territorial Clinical Hospital

Email: kruglovaos95@gmail.com
ORCID iD: 0000-0003-4840-1498
Russian Federation, Krasnoyarsk; Krasnoyarsk

References

  1. Трошина Е.А., Панфилова Е.А., Михина М.С. и др. Тиреоидиты. Методические рекомендации (в помощь практическому врачу). Consilium Medicum. 2019; 21 (12): 10–22 [Troshina E.A., Panfilova E.A., Mikhina M.S., Sviridonova M.A. Thyroiditis. Guidelines (to help the practitioner). Consilium Medicum. 2019; 21 (12): 10–22 (in Russ.)]. doi: 10.26442/20751753.2019.12.190683
  2. Hyöty H., Taylor K. The role of viruses in human diabetes. Diabetologia. 2002; 45: 1353–61. doi: 10.1007/s00125-002-0852-3
  3. Gilden D., Cohrs R.J., Mahalingam R. et al. Neurological Disease Produced by Varicella Zoster Virus Reactivation Without Rash. Varicella-zoster Virus. 2010; 342: 245–53. doi: 10.1007/82_2009_3
  4. Badani H., White T., Schulick N. et al. Frequency of varicella zoster virus DNA in human adrenal glands. J Neurovirol. 2016; 22 (3): 400–2. doi: 10.1007/s13365-016-0425-8
  5. Кабыш С.С., Карпенкова А.Д., Прокопенко С.В. Когнитивные нарушения и COVID-19. Сибирское медицинское обозрение. 2022; 2: 40–8 [Kabysh S.S., Karpenkova A.D., Prokopenko S.V. Cognitive impairments and COVID-19. Siberian Medical Review. 2022; 2: 40–8 (in Russ.)]. doi: 10.20333/25000136-2022-2-40-48
  6. Фелиг Ф., Бакстер Дж.Д., Бродус А.Е. и др. Эндокринология и метаболизм. Т. 2. М.: Медицина, 1985; с. 517 [Felig Ph., Baxter J.D., Brodus A.E. et al. Endocrinologу and metabolism. T. 2. M.: Meditsina, 1985; s. 517 (in Russ.)].
  7. Leow M.K., Kwek D.S., Ng A.W. et al. Hypocortisolism in survivorsofsevereacuterespiratorysyndrome (SARS). Clin Endocrinol (Oxf). 2005; 63 (2): 197–202. doi: 10.1111/j.1365-2265.2005.02325.x
  8. Demitrack M.A., Crofford L.J. Evidence for and Pathophysiologic Implications of Hypothalamic-Pituitary-Adrenal Axis Dysregulation in Fibromyalgia and Chronic Fatigue Syndrome. Ann N Y Acad Sci. 2006; 840: 684–97. doi: 10.1111/j.1749-6632.1998.tb09607.x
  9. Jefferies W.M.K., Turner J.C., Lobo M. et al. Low Plasma Levels of Adrenocorticotropic Hormone in Patients with Acute Influenza. Clin Infect Dis. 1998; 26 (3): 708–10. doi: 10.1086/514594
  10. Wheatland R. Molecular mimicryof ACTH in SARS – implications for corticosteroid treatment and prophylaxis. Med Hypotheses. 2004; 63 (5): 855–62. doi: 10.1016/j.mehy.2004.04.009
  11. Ding Y., Wang H., Shen H. et al. The clinical pathology of severe acute respiratory syndrome (SARS): a reportfrom China. J Pathol. 2003; 200 (3): 282–9. doi: 10.1002/path.1440
  12. Ding Y., He L., Zhang Q. et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004; 203 (2): 622–30. doi: 10.1002/path.1560
  13. Gu J., Gong E., Zhang B. et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005; 202 (3): 415–24. doi: 10.1084/jem.20050828
  14. Wang W., Ye Y.X., Yao H. Evaluation and observation of serum thyroid hormone and parathyroid hormone in patients with severe acute respiratory syndrome. J Chin Antituberculous Assoc. 2003; 25 (4): 232–4.
  15. Wei L., Sun S., Xu C.H. et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum Pathol. 2007; 38 (1): 95–102. doi: 10.1016/j.humpath.2006.06.011
  16. Chan J.W., Ng C.K., Chan Y.H. et al. Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax. 2003; 58 (8): 686–9. doi: 10.1136/thorax.58.8.686
  17. Yang J.K., Lin S.S., Ji X.J. et al. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010; 47 (3): 193–9. doi: 10.1007/s00592-009-0109-4
  18. Pohl M.O., Busnadiego I., Kufner V. et al. SARS-CoV-2 variants reveal features critical for replication in primary human cells. PLoS Biol. 2021; 19 (3): e3001006. doi: 10.1371/journal.pbio.3001006
  19. Lazartigues E., Qadir M.M.F., Mauvais-Jarvis F. Endocrine Significanceof SARS-CoV-2’s Reliance on ACE2. Endocrinology. 2020; 161 (9): 1–7. doi: 10.1210/endocr/bqaa108
  20. Agarwal S., Agarwal S.K. Endocrine changes in SARS-CoV-2 patients and lessons from SARS-CoV. Postgrad Med J. 2020; 96 (1137): 412–6. doi: 10.1136/postgradmedj-2020-137934
  21. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–42. doi: 10.1001/jama.2020.2648
  22. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the Cytokine Storm' in COVID-19. J Infect. 2020; 80 (6): 607–13. doi: 10.1016/j.jinf.2020.03.037
  23. Mateu-Salat M., Urgel, E., Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. J Endocrinol Invest. 2020; 43: 1527–8. doi: 10.1007/s40618-020-01366-7
  24. Chen M., Zhou W., Xu W. Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid. 2021; 31 (1): 8–11. doi: 10.1089/thy.2020.0363
  25. Brancatella A., Ricci D., Cappellani D. et al. Is Subacute Thyroiditis an Underestimated Manifestation of SARS-CoV-2 Infection? Insights From a Case Series. J Clin Endocrinol Metab. 2020; 105 (10): 3742–6. doi: 10.1210/clinem/dgaa537
  26. Solis C.N., Foreman J.H. Transient diabetes mellitus in a neonatal Thoroughbred foal. J Vet Emerg Crit Care. 2010; 20 (6): 611–5. doi: 10.1111/j.1476-4431.2010.00588.x
  27. Guo W., Li M., Dong Y. et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020; 36 (7): e3319. doi: 10.1002/dmrr.3319
  28. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. doi: 10.1016/S0140-6736(20)30183-5
  29. Li M.Y., Li L., Zhang Y. et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020; 9 (45): 1–7. doi: 10.1186/s40249-020-00662-x
  30. Mao Y., Xu B., Guan W. et al. The Adrenal Cortex, an Underestimated Site of SARS-CoV-2 Infection. Front Endocrinol. 2021; 9 (593179): 1–11. doi: 10.3389/fendo.2020.593179
  31. Zinserling V.A., Semenova N.Y., Markov A.G. et al. Inflammatory Cell Infiltration of Adrenals in COVID-19. Horm Metab Res. 2020; 52 (9): 639–41. doi: 10.1055/a-1191-8094
  32. Paul T., Ledderose S., Bartsch H. et al. Adrenal tropism of SARS-CoV-2 and adrenal findings in a post-mortem case series of patients with severe fatal COVID-19. Nature Communications. 2022; 13 (1). doi: 10.1038/s41467-022-29145-3
  33. Lechan R.M., Toni R. Functional Anatomy of the Hypothalamus and Pituitary. South Dartmouth (MA): MD Text.com, Inc. Endotext, 2016. URL: http://www.ncbi.nlm.nih.gov/pubmed/25905349
  34. Guijarro A., Laviano A., Meguid M.M. Hypothalamic integration of immune function and metabolism. Prog Brain Res. 2006; 153: 367–405. doi: 10.1016/S0079-6123(06)53022-5
  35. Saper C., Scammell T., Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005; 437: 1257–63. doi: 10.1038/nature04284
  36. Ganapathy M.K, Tadi P. Anatomy, Head and Neck, Pituitary Gland. StatPearls, 2022. URL: https://europepmc.org/article/NBK/nbk551529
  37. Kandasamy M., Radhakrishnan R.K., PoornimaiAbirami G.P. et al. Possible Existence of the Hypothalamic-Pituitary-Hippocampal (HPH) Axis: A Reciprocal Relationship Between Hippocampal Specific Neuroestradiol Synthesis and Neuroblastosis in Ageing Brains with Special Reference to Menopause and Neurocognitive Disorders. Neurochem Res. 2019; 44: 1781–95. doi: 10.1007/s11064-019-02833-1
  38. Daniel P.M. Anatomy of the hypothalamus and pituitary gland. J Clin Pathol. 1976; 1 (1): 1–7.
  39. Smith S.M., Vale W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006; 8 (4): 383–95. doi: 10.31887/DCNS.2006.8.4/ssmith
  40. Selvaraja K., Manickamb N., Kumarana E. et al. Deterioration of neuroregenerative plasticity in association with testicular atrophy and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis in Huntington’s disease: A putative role of the huntingtin gene in steroidogenesis. J Steroid Biochem Mol Biol. 2020; 197: 105526. doi: 10.1016/j.jsbmb.2019.105526
  41. Plant T.M. 60 years of neuroendocrinology: The hypothalamo-pituitary-gonadal axis. J Endocrinol. 2015; 226 (2): 41–54. doi: 10.1530/JOE-15-0113
  42. Ramaswamy S., Weinbauer G.F. Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone, Spermatogenesis. Spermatogenesis. 2014; 4 (2): e996025. doi: 10.1080/21565562.2014.996025
  43. Pozzilli P., Lenzi A. Commentary: Testosterone, a key hormone in the context of COVID-19 pandemic. Metabolism. 2020; 108 (154252): 1–2. doi: 10.1016/j.metabol.2020.154252
  44. Clavijo R.I., Hsiao W. Update on male reproductive endocrinology. Transl Androl Urol. 2018; 7 (3): 367–72. doi: 10.21037/tau.201
  45. Viau V. Functional Cross-Talk Between the Hypothalamic-Pituitary-Gonadal and -Adrenal Axes. J Neuroendocrinol. 2002; 14 (6): 506–13. doi: 10.1046/j.1365-2826.2002.00798.x
  46. Ma L., Xie W., Li D. et al. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. MedRxiv. 2020. doi: 10.1101/2020.03.21.20037267
  47. Çayan S., Uğuz M., Saylam B. et al. Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: a cohort st udy. Aging Male. 2020; 23 (5): 1493–503. doi: 10.1080/13685538.2020.1807930
  48. Pascual-Goñi E., Fortea J., Martinez-Domeño A. et al. COVID-19-associated ophthalmoparesis and hypothalamic involvement. Neurol Neuroimmunol Neuroinflamm. 2020; 7 (5): 1–5. doi: 10.1212/NXI.0000000000000823
  49. Selvaraj K., Ravichandran S., Krishnan S. et al. Testicular Atrophy and Hypothalamic Pathology in COVID-19: Possibility of the Incidence of Male Infertility and HPG Axis Abnormalities. Reprod Sci. 2021; 28: 2735–42. doi: 10.1007/s43032-020-00441-x
  50. Mogensen T.H., Paludan S.R. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev. 2001; 65 (1): 131–50. doi: 10.1128/MMBR.65.1.131-150.2001
  51. Malmgaard L. Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res. 2004; 24 (8): 439–54. doi: 10.1089/1079990041689665
  52. Mastorakos G., Pavlatou M.G., Mizamtsidi M. The hypothalamic-pituitary-adrenal and the hypothalamic-pituitary-gonadal axes interplay. Pediatr Endocrinol Rev. 2006; 3 (1): 172–81.
  53. Whirledge S., Cidlowski J.A. Glucocorticoids, stress, and fertility. Minerva Endocrinol. 2010; 35 (2): 109–25.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Endocrine changes seen in SARS-CoV infection. It shows a relationship of the coronavirus to the changes occurring in the hypothalamus, hypophysis, thyroid, and pancreas, adrenals [20]

Download (97KB)

Copyright (c) 2023 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies