Role of the gut microbiota in aging and maintenance of active longevity. Part 1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The role of intestinal microbiota in aging and maintaining active longevity is considered. The first part of the article describes the characteristics of a healthy microbiome, its changes during aging, and the composition of the intestinal microbiome of centenarians. The importance of high microbiome biodiversity in maintaining active longevity is emphasized. The role of intestinal permeability and new biomakers that assess its condition (including zonulin) in maintaining health and in the development of intestinal dysbiosis is revealed. Separate groups of microorganisms that are associated with longevity have been identified (such as Verrucomicrobia, which includes Akkermansia), and the important role of the Bacteroidetes – Firmicutes ratio has been noted. The influence of age-associated changes in the microbiome on health, the connection between changes in the microbiome and physical activity, the possibility of using microbiome analysis to predict biological age, and the correlation of microbiome composition with biomarkers of health and disease are discussed.

Full Text

Restricted Access

About the authors

A. Ratnikova

Health Care Resort «First Line»; North-Western Regional Scientific and Clinical Center named after L.G. Sokolov, Federal Medical and Biological Agency of Russia

Author for correspondence.
Email: ya.ashikhmin@gmail.com
ORCID iD: 0000-0003-3279-6448

Candidate of Medical Sciences

Russian Federation, Saint Petersburg; Saint Petersburg

M. Grudina

Health Care Resort «First Line»

Email: ya.ashikhmin@gmail.com
ORCID iD: 0000-0002-1607-3576
Russian Federation, Saint Petersburg

V. Ratnikov

North-Western Regional Scientific and Clinical Center named after L.G. Sokolov, Federal Medical and Biological Agency of Russia

Email: ya.ashikhmin@gmail.com
ORCID iD: 0000-0002-9645-8408

Professor, MD

Russian Federation, Saint Petersburg

O. Dikur

I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia; Clinic «Rassvet»

Email: ya.ashikhmin@gmail.com
ORCID iD: 0000-0002-4442-6447

Candidate of Medical Sciences

Russian Federation, Moscow; Moscow

Ya. Ashikhmin

Health Care Resort «First Line»; Center for Healthcare Quality Assessment and Control, Ministry of Health of Russia; Clinic «DocMed»

Email: ya.ashikhmin@gmail.com
ORCID iD: 0000-0002-1243-5701

Candidate of Medical Sciences

Russian Federation, Saint Petersburg; Moscow; Moscow

References

  1. Lopez-Otin C., Blasco M.A., Partridge L. et al. The hallmarks of aging. Cell. 2013; 153 (6): 1194–217. doi: 10.1016/j.cell.2013.05.039
  2. Wang W-L., Xu S-Y., Ren Z-G. et al. Application of metagenomics in the human gut microbiome. World J Gastroenterol. 2015; 21 (3): 803–14. doi: 10.3748/wjg.v21.i3.803
  3. Schoultz I., Keita Å.V. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells. 2020; 9 (8): 1909. doi: 10.3390/cells9081909
  4. Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019; 68 (8): 1516–26. doi: 10.1136/gutjnl-2019-318427
  5. Симаненков В.И., Maeв И.В., Ткачева Щ.Н. и др. Синдром повышенной эпителиальной проницаемости в клинической практике. Мультидисциплинарный национальный консенсус. Кардиоваскулярная терапия и профилактика. 2021; 20 (1): 2758 [Simanenkov V.I., Maev I.V., Tkacheva O.N. et al. Syndrome of increased epithelial permeability in clinical practice. Multidisciplinary national Consensus. Cardiovascular Therapy and Prevention. 2021; 20 (1): 2758 (in Russ.)]. doi: 10.15829/1728-8800-2021-2758
  6. Cheung K.S., Hung I.F., Chan P.P. et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and metaanalysis. Gastroenterology. 2020; 159 (1): 81–95. doi: 10.1053/j.gastro.2020.03.065
  7. Fordtran J.S., Rector F.C., Ewton M.F. et al. Permeability characteristics of the human small intestine. J Clin Invest. 1965; 44 (12): 1935–44. doi: 10.1172/JCI105299
  8. Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim Sci J. 2020; 91 (1): 13357. doi: 10.1111/asj.13357
  9. Ashikhmin Y.I., Syrkin A.L., Zamyatnin A.A. et al. The Gut Microbiota in Cardiovascular Diseases: From Biomarkers and Potential Targets to Personalized Interventions. Curr Pharmacogenomics Person Med. 2018; 16 (1): 75–85. doi: 10.2174/1875692116666180511170329
  10. Canfora E.E., Jocken J.W., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015; 11 (10): 577–91. doi: 10.1038/nrendo.2015.128
  11. Gomma E.Z. Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek. 2020; 113 (12): 2019–40. doi: 10.1007/s10482-020-01474-7
  12. Conway J., Duggal N.А. Ageing of the gut microbiome: Potential influences on immune senescence and inflammageing. Ageing Res Rev. 2021; 68: 101323. doi: 10.1016/j.arr.2021.101323
  13. Tojo R. Intestinal microbiota in health and disease: Role of bifdobacteria in gut homeostasis. World J Gastroenterol. 2014; 20 (41): 15163. doi: 10.3748/wjg.v20.i41.15163
  14. Santoro A., Martucci M., Conte M. et al. Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Rev. 2020; 64: 101142. doi: 10.1016/j.arr.2020.101142
  15. Santoro A., Ostan R., Candela M. et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci. 2018; 75 (1): 129–48. doi: 10.1007/s00018-017-2674-y
  16. Шемеровский К.А., Селиверстов П.В., Бочкарев М.В. и др. Хронофизиологический механизм регулярности циркадианного ритма эвакуаторной функции кишечника. Экспериментальная и клиническая гастроэнтерология. 2019; 5: 150–3 [Shemerovsky K.A., Seliverstov P.V., Bochkarev M.V. et al. Chronophysiological mechanism of the circadian rhythm Regularity of the intestine evacuation function. Experimental and Clinical Gastroenterology. 2019; 5: 150–3 (in Russ.)]. doi: 10.31146/1682-8658-ecg-165-5-150-153
  17. Kong F., Hua Y., Zeng B. et al. Gut microbiota signatures of longevity. Curr Biol. 2016; 26 (18): R832–R833. doi: 10.1016/j.cub.2016.08.015
  18. Badal V.D., Vaccariello E.D., Murray E.R. et al. The Gut Microbiome, Aging, and Longevity: A Systematic Review. Nutrients. 2020; 12 (12): 3759. doi: 10.3390/nu12123759
  19. Kim B.-S., Choi C.W., Shin H. et al. Comparison of the Gut Microbiota of Centenarians in Longevity Villages of South Korea with Those of Other Age Groups. J Microbiol Biotechnol. 2019; 29 (3): 429–40. doi: 10.4014/jmb.1811.11023
  20. Wu L., Zeng T., Zinellu A. et al. A Cross-Sectional Study of Compositional and Functional Profiles of Gut Microbiota in Sardinian Centenarians. mSystems. 2019; 4 (4): 00325-19. doi: 10.1128/msystems.00325-19
  21. Kushugulova A.R., Kozhakhmetov S.S., Baiskhanova D.M. et al. Gut microbiome diversity in Kazakhstani women of different age groups. Int J Probiotics Prebiotics. 2015; 10 (2/3): 97–108. doi: 10.11134/btp.4.2014.1
  22. Drago L., Toscano M., Rodighiero V. et al. Cultivable and Pyrosequenced Fecal Microflora in Centenarians and Young Subjects. J Clin Gastroenterol. 2012; 46: S81–S84. doi: 10.1097/mcg.0b013e3182693982
  23. Odamaki T., Kato K., Sugahara H. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016; 16 (1): 1–12. doi: 10.1186/s12866-016-0708-5
  24. Kashtanova D.A., Tkacheva O.N., Doudinskaya E.N. et al. Gut Microbiota in Patients with Deferent Metabolic Statuses: Moscow Study. Microorganisms. 2018; 6 (4): 98. doi: 10.3390/microorganisms6040098
  25. Biagi E., Franceschi C., Rampelli S. et al. Gut Microbiota and Extreme Longevity. Curr Biol. 2016; 26 (11): 1480–5. doi: 10.1016/j.cub.2016.04.016
  26. Waters J.L., Ley R.E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019; 17 (1): 83. doi: 10.1186/s12915-019-0699-4
  27. Everard A., Belzer C., Geurts L. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013; 110 (22): 9066–71. doi: 10.1073/pnas.1219451110
  28. Wilmanski T., Diener C., Rappaport N. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab. 2021; 3 (2): 274–86. doi: 10.1038/s42255-021-00348-0
  29. Gevers D., Kugathasan S., Denson L.A. et al. The Treatment-Naive Microbiome in New-Onset Crohn’s Disease. Cell Host Microbe. 2014; 15 (3): 382–92. doi: 10.1016/j.chom.2014.02.005
  30. Wu H.-J., Ivanov I.I., Darce J. et al. Gut-Residing Segmented Filamentous Bacteria Drive Autoimmune Arthritis via T Helper 17 Cells. Immunity. 2010; 32 (6): 815–27. doi: 10.1016/j.immuni.2010.06.001
  31. Manor O., Dai C.L., Kornilov S.A. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020; 11 (1): 5206. doi: 10.1038/s41467-020-18871-1
  32. Селиверстов П.В., Радченко В.Г., Сафронова И.Г. и др. Взаимоотношения печени и кишечника на фоне дисбаланса микрофлоры толстой кишки. Гастроэнтерология Санкт-Петербурга. 2010; 2-3: 15–8 [Seliverstov P.V., Radchenko V.G., Safronova I.G. et al. Relationship of liver and intestine on the background of imbalance of colon microflora. Gastroenterology of St. Petersburg. 2010; 2-3: 15–8 (in Russ.)].
  33. Gupta V.K., Kim M., Bakshi U. et al. A predictive index for health status using species-level gut microbiome profiling people. Nat Commun. 2020; 11 (1): 4635. doi: 10.1038/s41467-020-18476-8
  34. Nie P., Li Z., Wang Y. et al. Gut microbiome interventions in human health and diseases. Med Res Rev. 2019; 39 (6): 2286–313. doi: 10.1002/med.21584

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies