Medical applications of photopolymer printing technologies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Photopolymer printing technologies are getting increasingly popular especially in the medical field. They allow the creation of precise 3D models of organs, tissues, bones and other anatomical structures with a high degree of detail and accuracy. This ability has become particularly important in medical practice, where the accuracy and quality of the models are fundamental to assessing the patient’s condition, planning treatment and preparing surgery. This article considers technologies of stereolithographic printing in medicine and their practical application, advantages and disadvantages, in addition, the potential of the application of this technology to treat people who suffered serious injuries during a special military operation.

Full Text

Restricted Access

About the authors

G. Е. Bordina

Tver State Medical University, Ministry of Health of Russia

Author for correspondence.
Email: gbordina@yandex.ru

Candidate of Biological Sciences

Russian Federation, Tver

N. P. Lopina

Tver State Medical University, Ministry of Health of Russia

Email: gbordina@yandex.ru

Candidate of Chemical Sciences

Russian Federation, Tver

А. S. Shabalin

Tver State Medical University, Ministry of Health of Russia

Email: gbordina@yandex.ru
Russian Federation, Tver

Т. I. Kanunnikov

Tver State Medical University, Ministry of Health of Russia

Email: gbordina@yandex.ru
Russian Federation, Tver

References

  1. Полушкин Д.П. 3D-печать методом SLA. Инновационное развитие. 2018; 1 (18): 24–5 [Polushkin D.P. 3D-printing by the SLA method. Innovacionnoe razvitie. 2018; 1 (18): 24–5 (in Russ.)]. doi: 10.31857/S0235711922030038
  2. Современное состояние SLA-технологий. Сб. мат-лов II Междунар. научно-практ. конф. Кемерово, 3–4 октября 2018 г. Кемерово: Изд-во КГТУ им. Т.Ф. Горбачева, 2018; с. 147–51 [Modern condition of SLA-technologies. Materials of II international scientific and practical conference, Kemerovo, 3–4 okt 2018. Kemerovo: Izd-vo Kuzbass State Technical University, 2018; рр. 147–51 p. (in Russ.)].
  3. Лысыч М.Н., Белинченко Р.А., Шкильный А.А. Материалы для 3D печати. Актуальные направления научных исследований XXI века: теория и практика. 2014. 4-3 (9-3): 200–5 [Lysych M.N., Belinchenko R.A., Shkil'nyi A.A. Materialy dlya 3D pechati. Aktual'nye napravleniya nauchnykh issledovanii XXI veka: teoriya i praktika. 2014. 4-3 (9-3): 200–5 (in Russ.)].
  4. Deng K., Chen H., Wei W. et al. Accuracy of tooth positioning in 3D-printing aided manufactured complete dentures: An in vitro study. J Dent. 2023; 131: 104459. doi: 10.1016/j.jdent.2023.104459
  5. Боpдина Г.Е., Лопина Н.П., Паршин Г.С. и др. К вопросу о механизме световой полимеризации композитов. Российский стоматологический журнал. 2022; 26 (2): 163–70 [Bordina G.E., Lopina N.P., Parshin G.S. et al. Mechanism of light polymerization of composites. Russian Journal of Dentistry. 2022; 26 (2): 163–70 (in Russ.)]. doi: 10.17816/1728-2802-2022-26-2-163-170
  6. Topa M. Light cured dental composite resins [Internet]. Encyclopedia. URL: https://encyclopedia.pub/item/revision/cc56ab086bd8c94dd72116f4b2e9eb6d
  7. Park S.M., Park J.M., Kim S. K. et al. Flexural Strength of 3D-Printing Resin Materials for Provisional Fixed Dental Prostheses. Materials (Basel). 2020; 13 (18): 3970. doi: 10.3390/ma13183970
  8. Ribeiro A.K.C., de Freitas R.F.C.P., de Carvalho I.H.G. et al. Flexural strength, surface roughness, micro-CT analysis, and microbiological adhesion of a 3D-printed temporary crown material. Clin Oral Investig. 2023; 27 (5): 2207–20. doi: 10.1007/s00784-023-04941-3
  9. Nusem E., Bray L., Lillia J. et al. Utility of 3D Printed Models Versus Cadaveric Pathology for Learning: Challenging Stated Preferences. Med Sci Educ. 2022; 32 (6): 1513–20. doi: 10.1007/s40670-022-01684-w
  10. McMenamin P.G., Quayle M.R., McHenry C.R. et al. The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ. 2014; 7 (6): 479–86. doi: 10.1002/ase.1475
  11. Vaccarezza M., Papa V. 3D printing: a valuable resource in human anatomy education. Anat Sci Int. 2015; 90 (1): 64–5. doi: 10.1007/s12565-014-0257-7
  12. Garcia J., Yang Z., Mongrain R. et al. 3D printing materials and their use in medical education: a review of current technology and trends for the future. BMJ Simul Technol Enhanc Learn. 2018; 4 (1): 27–40. doi: 10.1136/bmjstel-2017-000234
  13. Anadioti E., Musharbash L., Blatz M.B. et al. 3D printed complete removable dental prostheses: a narrative review. BMC Oral Health. 2020; 20 (1): 343. doi: 10.1186/s12903-020-01328-8
  14. Schweiger J., Stumbaum J., Edelhoff D. et al. Systematics and concepts for the digital production of complete dentures: risks and opportunities. Int J Comput Dent. 2018; 21 (1): 41–56.
  15. Park S.M., Park J.M., Kim S.K. et al. Comparison of Flexural Strength of Three-Dimensional Printed Three-Unit Provisional Fixed Dental Prostheses according to Build Directions. J Korean Dent Sci. 2019; 12 (1): 13–9. doi: 10.5856/JKDS.2019.12.1.13
  16. Sakes A., Hovland K., Smit G. et al. Design of a novel three-dimensional-printed two degrees-of-freedom steerable electrosurgical grasper for minimally invasive surgery. ASME J Med Devices. 2018; 12 (1): 011007. doi: 10.1115/1.4038561
  17. Culmone C., Lussenburg K., Alkemade J. et al. A fully 3D-printed steerable instrument for minimally invasive surgery. Materials (Basel). 2021; 14 (24): 7910. doi: 10.3390/ma14247910
  18. Papadopoulos V.N., Tsioukas V., Suri J.S. 3D Printing: Application in Medical Surgery. Vol. 2. Elsevier, 2021; 368 р.
  19. Haffner M., Quinn A., Hsieh T.Y. et al. Optimization of 3D Print Material for the Recreation of Patient-Specific Temporal Bone Models. Ann Otol Rhinol Laryngol. 2018; 127 (5): 338–43. doi: 10.1177/0003489418764987

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Methacrylate monomers used in dental composites [5, 6]

Download (273KB)
3. Fig. 2. Excitation of camphoroquinone molecule and further formation of two methacrylate monoradicals [5]

Download (66KB)
4. Fig. 3. 3D-printed heart mockup (left) and heart preparation (right)

Download (72KB)
5. Fig. 4. 3D-printed denture using SLA technology

Download (76KB)
6. Fig. 5. Volt laparoscopic clamp: a – 3D model; б – instrument printed on a 3D printer

Download (239KB)

Copyright (c) 2024 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies