A predictive model for determining the probability of age-related diseases

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Objective. To develop and validate a predictive model for determining the probability of developing age-related diseases based on a comprehensive analysis of clinical, genetic, and metabolic data.

Materials and methods. The characteristics of somatic health (anthropometry, blood pressure, pulse, complete blood count, ratio of neutrophils to lymphocytes, platelets to lymphocytes, blood biochemistry, glomerular filtration rate, echocardiography, electrocardiography, drug therapy), musculoskeletal parameters (FRAIL, Katz scale, SARC-F questionnaire, handgrip strength, bioimpedance measurement), sensory (ophthalmological examination), cognitive (MMSE test), psychological (Beck scale, asthenic state scale), and nutritional (MNA scale) parameters.

Results. A predictive model for the risk of developing prediabetes was created. The model was statistically significant (p<0.001). It was shown that the chances of prediabetes decrease with age, but increase 16.923 times in the presence of excess body weight, 19.924 times in the presence of obesity, and 2.574 times in the presence of diabetes mellitus. The probability estimate “p” has statistically significant predictive power (AUC=0.885; p<0.001). The optimal threshold value is p=0.089 (sensitivity – 96.2%, specificity – 74.7%).

Conclusion. A predictive model for age-related diseases is important in personalized medicine and aging prevention. Developing predictive models requires analyzing big data, identifying key biomarkers and risk factors that correlate with disease development.

全文:

受限制的访问

作者简介

I. Kochetkova

N.N. Burdenko Voronezh State Medical University, Ministry of Health of Russia

编辑信件的主要联系方式.
Email: iri4217@yandex.ru
ORCID iD: 0000-0002-7546-6679
SPIN 代码: 9933-5015

Associate Professor, Candidate of Medical Sciences

俄罗斯联邦, Voronezh

参考

  1. Порядин Г.В., Салмаси Ж.М., Мишнев О.Д. и др. Патофизиология (общая и клиническая патофизиология). Учебник для студентов учреждений высшего медицинского образования. В 2 т. Под ред. Г.В. Порядина. М.: МИА, 2022 [Poryadin G.V., Salmasy Zh.M., Mishnev O.D., et al. Pathophysiology (general and clinical pathophysiology). Textbook for students of higher medical education institutions. In 2 volumes. Edited by G.V. Poryadin. Moscow: MIA, 2022 (in Russ.)].
  2. Cloete L. Diabetes mellitus: An overview of the types, symptoms, complications and management. Nurs Stand. 2021; 37: 61–6. doi: 10.7748/ns.2021.e117092
  3. Cooper O.A.E., Taylor D.J., Crabb D.P. et al. Psychological, social and everyday visual impact of diabetic macular oedema and diabetic retinopathy: a systematic review. Diabet Med. 2020; 37 (6): 924–33. doi: 10.1111/dme.14125
  4. Kumar A., Gangwar R., Zargar A.A. et al. Prevalence of diabetes in India: a review of IDF Diabetes Atlas 10th edition. Curr Diabetes Rev. 2024; 20 (1): e130423215752. doi: 10.2174/1573399819666230413094200
  5. Lin K.-Y., Hsih W.-H., Lin Y.-B. et al. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J Diabetes Investig. 2021; 12: 1322–5. doi: 10.1111/jdi.13480
  6. Lovic D., Piperidou A., Zografou I. et al. The Growing Epidemic of Diabetes Mellitus. Curr Vasc Pharmacol. 2020; 18: 104–9. doi: 10.2174/1570161117666190405165911
  7. Saeedi P., Petersohn I., Salpea P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019; 157: 107843. doi: 10.1016/j.diabres.2019.107843
  8. Taipale J., Mikhailova A., Ojamo M. et al. Low vision status and declining vision decrease Health-Related Quality of Life: Results from a nationwide 11-year follow-up study. Qual Life Res. 2019; 28: 3225–36. doi: 10.1007/s11136-019-02260-3
  9. Riddle M.C., Herman W.H. The Cost of Diabetes Care – An Elephant in the Room. Diabetes Care. 2018; 41: 929–32. doi: 10.2337/dci18-0012
  10. Ильницкий А.Н., Белоусов Н.И., Осипова О.А. и др. Научные исследования в области геронтологии и гериатрии в десятилетие здорового старения (2021–2030 гг.). Врач. 2021; 32 (6): 5–8 [Ilnitski A.N., Belousov N.I., Osipova O.A. et al. Researches in gerontology and geriatrics in the Decade of Healthy Aging (2021-2030). Vrach. 2021; 32 (6): 5–8 (in Russ.)]. doi: 10.29296/25877305-2021-06-01
  11. Кочеткова И.В., Трофимова Т.Г., Савельева Г.О. и др. Отношение нейтрофилов к лимфоцитам как инструмент оценки риска кардиальных осложнений у пациентов пожилого возраста с сахарным диабетом типа. Врач. 2024; 35 (12): 86–9 [Kochetkova I.V., Trofimova T.G., Savelyeva G.O. et al. Neutrophil lymphocyte coefficient as a tool for assessing the risk of cardiac complications in elderly patients with type 2 diabetes mellitus. Vrach. 2024; 35 (12): 86–9 (in Russ.)]. doi: 10.29296/25877305-2024-12-16
  12. Зацепина И.В., Кочеткова И.В., Фурсова Е.А. и др. Распространенность курения среди студентов медицинского вуза. Профилактическая медицина. 2024; 27 (6): 29–35 [Zatsepina I.V., Kochetkova I.V., Fursova E.A. et al. Smoking prevalence among students of medical university. Russian Journal of Preventive Medicine. 2024; 27 (6): 29–35 (in Russ.)]. doi: 10.17116/profmed20242706129
  13. Быковский А.С., Золотых А.Е., Кочеткова И.В. и др. Изучение осведомленности о факторах риска развития хронических неинфекционных заболеваний. Молодежный инновационный вестник. 2024; 13 (S1): 399–402 [Bykovsky A.S., Zolotykh A.E., Kochetkova I.V., et al. Study of awareness of risk factors for chronic noncommunicable diseases. Youth Innovation Bulletin. 2024; 13 (S1): 399–402 (in Russ.)].
  14. Кочеткова И.В., Фурсова Е.А., Кравцова А.В. Профилактика болезней системы кровообращения и снижение сердечно-сосудистого риска на основе использования современных профессиональных стандартов. Системный анализ и управление в биомедицинских системах. 2023; 22 (2): 154–62 [Kochetkova I.V., Fursova E.A., Kravtsova A.V. Use of effective professional standards for the prevention of circulatory system diseases to reduce cardiovascular risk. System Analysis and Control in Biomedical Systems. 2023; 22 (2): 154–62 (in Russ.)]. doi: 10.36622/VSTU.2023.22.2.022
  15. Кочеткова И.В., Фурсова Е.А., Золотарева Ю.А. Общий анализ результатов социологических исследований по распространенности факторов риска развития хронических неинфекционных заболеваний у студентов ФГБОУ ВО ВГМУ Им. Н.Н. Бурденко за учебный год 2022–2023 гг. Профилактическая и клиническая медицина. 2023; 4 (89): 80–5 [Kochetkova I.V., Fursova E.A., Zolotareva Yu.A. General analysis of the results of sociological studies on the prevalenceof risk factors for the development of chronic non-infectious diseases in students of the Voronezh State Medical University named after N.N. Burdenko for the academic year (september 2022 – may 2023). Preventive and Clinical Medicine. 2023; 4 (89): 80–5 (in Russ.)]. doi: 10.47843/2074-9120_2023__4_80

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Assessment of odds ratios with a 95% confidence interval for the considered prognostic factors of prediabetes

下载 (63KB)
3. Fig. 2. ROC curve demonstrating the capabilities of the regression model in identifying cases of prediabetes in prediction

下载 (71KB)
4. Fig. 3. Influence of threshold values for prediabetes probability on the sensitivity and specificity indicators of the developed model

下载 (93KB)
5. Fig. 4. Assessment of odds ratios with a 95% confidence interval for the considered prognostic factors of diabetes

下载 (57KB)
6. Fig. 5. ROC curve demonstrating the effectiveness of the regression model in identifying cases of diabetes in prediction

下载 (76KB)
7. Fig. 6. Influence of threshold values for diabetes probability on the sensitivity and specificity indicators of the developed model

下载 (95KB)

版权所有 © Russkiy Vrach Publishing House, 2025