Innovative technology for restoring gait patterns in patients with impaired mobility
- Authors: Marchenkova L.A.1, Tulupov D.O.1
-
Affiliations:
- National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia
- Issue: Vol 36, No 10 (2025)
- Pages: 5-10
- Section: Topical Subject
- URL: https://journals.eco-vector.com/0236-3054/article/view/696260
- DOI: https://doi.org/10.29296/25877305-2025-10-01
- ID: 696260
Cite item
Abstract
Gait impairment is one of the most severe and socially significant consequences of both orthopedic pathology (total knee arthroplasty – TKA) and neurological diseases (acute cerebral circulation disorder – ACCD). Restoring safe and independent locomotion is a central task of medical rehabilitation, determining patients' quality of life and their reintegration into society.
The anti-gravity treadmill (AGT), based on Differential Air Pressure technology, allows for early, dosed, and physiological gait training with precise control of axial load (from 1% to 100% of body weight). The use of AGT contributes to a significant improvement in spatiotemporal gait parameters (speed increases by 25–40%, endurance by 30–45%, step symmetry by 15–25%), reduction of pain syndrome by 35–50% on visual analogue scale, overcoming kinesiophobia, and improvement of quality of life by 20–30% on SF-36 questionnaire in patients after TKA and ACCD. The technology demonstrates high efficiency for other nosology’s: multiple sclerosis (balance improvement by 40%), Parkinson's disease (step length increases by 25%), sports rehabilitation (reduction of recovery time by 30%).
Full Text
About the authors
L. A. Marchenkova
National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia
Author for correspondence.
Email: marchenkovala@nmicrk.ru
ORCID iD: 0000-0003-1886-124X
SPIN-code: 9619-8004
Associate Professor, MD
Russian Federation, MoscowD. O. Tulupov
National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia
Email: marchenkovala@nmicrk.ru
ORCID iD: 0000-0001-7812-0545
SPIN-code: 9844-7885
Russian Federation, Moscow
References
- World Health Organization. World report on disability. Geneva: WHO, 2011.
- Langhorne P., Coupar F., Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009; 8 (8): 741–54. doi: 10.1016/S1474-4422(09)70150-4
- Hunter D.J., Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019; 393 (10182): 1745–59. doi: 10.1016/S0140-6736(19)30417-9
- Lee J.H., Kim E.J. Optimizing Rehabilitation Outcomes for Stroke Survivors: The Impact of Speed and Slope Adjustments in Anti-Gravity Treadmill Training. Medicina (Kaunas). 2024; 60 (4): 542. doi: 10.3390/medicina60040542
- Feigin V.L. et al. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021; 20 (10): 795–820. doi: 10.1016/S1474-4422(21)00252-0
- Atan T., Bildik Y.E., Demir Y. et al. Comparison of anti-gravity treadmill training and traditional treadmill training in patients with moderate to severe knee osteoarthritis: A randomized controlled trial. Ir J Med Sci. 2025; 194 (1): 125–36. doi: 10.1007/s11845-024-03836-w
- Отчет Национального регистра эндопротезирования (НГЭТР) за 2022 год. Ассоциация травматологов-ортопедов России, 2022 Report of the National Endoprosthetics Registry (NGETR) for 2022. Association of Traumatologists and Orthopedists of Russia, 2022 (in Russ.)].
- Корнилов Н.Н., Куляба Т.А., Филь А.С. и др. Данные регистра эндопротезирования коленного сустава РНИИТО им. Р.Р. Вредена за 2011–2013 годы. Травматология и ортопедия России. 2015; 1: 136–51 [Kornilov N.N., Kulyaba T.A., Fil A.S. et al. Data of knee arthroplasty register of Vreden Russian Research Institute of Traumatology and Orthopedics for period 2011–2013. Traumatology and Orthopedics of Russia. 2015; 1: 136–51 (in Russ.)] doi: 10.21823/2311-2905-2015-0-1-136-151
- Florence C.S., Bergen G., Atherly A. et al. Medical costs of fatal and nonfatal falls in older adults. J Am Geriatr Soc. 2018; 66 (4): 693–8. doi: 10.1111/jgs.15304
- Mehrholz J., Thomas S., Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017; 8 (8): CD002840. doi: 10.1002/14651858.CD002840.pub4
- Pearse E.O., Caldwell B.F., Lockwood R.J. et al. Early mobilisation after conventional knee replacement may reduce the risk of postoperative venous thromboembolism. J Bone Joint Surg Br. 2007; 89 (3): 316–22. doi: 10.1302/0301-620X.89B3.18196
- Grabowski A.M., Kram R. Effects of velocity and weight support on ground reaction forces and metabolic power during running. J Appl Biomech. 2008; 24 (3): 288–97. doi: 10.1123/jab.24.3.288
- Moher D., Liberati A., Tetzlaff J. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6 (7): e1000097. doi: 10.1371/journal.pmed.1000097
- Sherrington C., Herbert R.D., Maher C.G. et al. PEDro: a database of randomized trials and systematic reviews in physiotherapy. Man Ther. 2000; 5 (4): 223–6. doi: 10.1054/math.2000.0372
- Sterne J.A., Hernán M.A., Reeves B.C. et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016; 355: i4919. doi: 10.1136/bmj.i4919
- AlterG. How AlterG Works. Official Website, 2023. URL: https://alterg.com/
- Cutuk A., Groppo E.R., Quigley E.J. et al. Ambulation in simulated fractional gravity using a lower-body positive pressure treadmill. J Appl Physiol. 2006; 101 (3): 771–7. doi: 10.1152/japplphysiol.00644.2005
- Raffalt P.C., Hovgaard-Hansen L., Jensen B.R. Running on a lower-body positive pressure treadmill: VO2max, respiratory response, and vertical ground reaction force. Res Sports Med. 2013; 84 (2): 213–22. doi: 10.1080/02701367.2013.784721
- Apte S., Plooij M., Vallery H. Influence of body weight unloading on human gait characteristics: a systematic review. J NeuroEngineering Rehabil. 2018; 53: 1–10. doi: 10.1186/s12984-018-0380-00
- Lam T. et al. The effects of body-weight support treadmill training on gait recovery in stroke patients: a systematic review. Physiother Can. 2011; 63 (4): 77–90.
- Kelly B.T. et al. Hydrotherapy versus land-based exercises for rehabilitation after total knee arthroplasty: a systematic review. Physiother Theory Pract. 2020; 36 (4): 1–12.
- Raddatz M., Smoliga J., Lephart S. The Use of Anti-Gravity Treadmill in the Rehabilitation of Musculoskeletal Injuries: A Systematic Review. Sports Health. 2020; 12 (1): 74–81.
- Wang L., Lee M., Zhang Z. et al. Does preoperative rehabilitation for patients planning to undergo joint replacement surgery improve outcomes? A systematic review and meta-analysis of randomized controlled trials. BMJ Open. 2016; 6 (2): e009857. doi: 10.1136/bmjopen-2015-009857
- Bugbee W., Pulido P., Goldberg T. et al. Use of an anti-gravity treadmill for early postoperative rehabilitation after total knee replacement: a pilot study to determine safety and feasibility. Am J Orthop (Belle Mead NJ). 2016; 45 (5): E167–73.
- Webber S.C., Horvey K.J., Pikaluk M.T.Y. et al. Cardiovascular responses in older adults with total knee arthroplasty at rest and with exercise on a positive pressure treadmill. Eur J Appl Physiol. 2014; 114 (3): 653–62. doi: 10.1007/s00421-013-2798-1
- Langhorne P., Bernhardt J., Kwakkel G. Stroke rehabilitation. Lancet. 2011; 377 (9778): 1693–702. doi: 10.1016/S0140-6736(11)60325-5
- Hornby T.G., Straube D.S., Kinnaird C.R. et al. Importance of specificity, amount, and intensity of locomotor training to improve ambulatory function in patients poststroke. Top Stroke Rehabil. 2011; 18 (4): 293–307. doi: 10.1310/tsr1804-293
- Swinnen E. et al. The effectiveness of body weight-supported gait training in stroke patients. Neurorehabil Neural Repair. 2019; 33 (3): 193–9.
- Fisher B.E. et al. The effect of exercise training on the quality of life in patients with Parkinson's disease. Mov Disord. 2016; 31 (10): 1580–4.
- Raddatz M., Smoliga J., Lephart S. The Use of Anti-Gravity Treadmill in the Rehabilitation of Musculoskeletal Injuries: A Systematic Review. Sports Health. 2020; 12 (1): 74–81.
- Vij N., Leber C., Schmidt K. Current applications of gait analysis after total knee arthroplasty: A scoping review. J Clin Orthop Trauma. 2022; 33: 102014. doi: 10.1016/j.jcot.2022.102014
- Gremeaux V. et al. Analysis of the impact of a rehabilitation program using an antigravity treadmill on the functional parameters of patients after total knee arthroplasty: a randomized controlled trial. Ann Phys Rehabil Med. 2012; 55 (Suppl 1): e100–e101.
- Jiang Z., Zhang X., Fu Q. et al. Effects of body weight support training on balance and walking function in stroke patients: a systematic review and meta-analysis. Front Neurol. 2024; 15: 1413577. doi: 10.3389/fneur.2024.1413577
- Miller L., Paul L., Mattison P. Evaluation of a treadmill with partial body weight support for the rehabilitation of patients with multiple sclerosis. Mult Scler J. 2016; 22 (3 Suppl.): 795–6.
- Liang J., Lang S., Zheng Y. et al. The effect of anti-gravity treadmill training for knee osteoarthritis rehabilitation on joint pain, gait, and EMG: Case report. Medicine (Baltimore). 2019; 98 (18): e15386. doi: 10.1097/MD.0000000000015386
- Stevens-Lapsley J.E., Balter J.E., Wolfe P. et al. Early neuromuscular electrical stimulation to improve quadriceps muscle strength after total knee arthroplasty: a randomized controlled trial. Phys Ther. 2012; 92 (2): 210–26. doi: 10.2522/ptj.20110124
- Duncan P.W., Sullivan K.J., Behrman A.L. et al. Body-weight–supported treadmill rehabilitation after stroke. N Engl J Med. 2011; 364 (21): 2026–36. doi: 10.1056/NEJMoa1010790
- Sullivan K.J., Brown D.A., Klassen T. et al. Effects of task-specific locomotor and strength training in adults who were ambulatory after stroke: results of the STEPS randomized clinical trial. Phys Ther. 2007; 87 (12): 1580–602. doi: 10.2522/ptj.20060310
- Dobkin B.H., Apple D., Barbeau H. et al. Methods for a randomized trial of weight-supported treadmill training versus conventional training for walking during inpatient rehabilitation after incomplete traumatic spinal cord injury. Neurorehabil Neural Repair. 2003; 17 (3): 153–67. doi: 10.1177/0888439003255508
- Moseley A.M., Stark A., Cameron I.D. et al. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2005; 4: CD002840. doi: 10.1002/14651858.CD002840.pub2
- Ada L., Dean C.M., Vargas J. et al. Mechanically assisted walking with body weight support results in more independent walking than assisted overground walking in non-ambulatory patients early after stroke: a systematic review. J Physiother. 2010; 56 (3): 153–61. doi: 10.1016/s1836-9553(10)70020-5
- van Hedel H.J. et al. Improving gait assessment in neurological disorders: towards a standardized approach. Neurorehabil Neural Repair. 2018; 32 (1): 3–12.
- Paton M. et al. Using an anti-gravity treadmill for rehabilitation of a patient with morbid obesity. J Rehabil Med Clin Commun. 2017; 1: 1000003.
- Bruetsch A.P. et al. The effects of anti-gravity treadmill training on balance and gait in older adults. Aging Clin Exp Res. 2021; 33 (5): 1343–52.
- Fox E.J. et al. The use of robotic and body weight support systems in spinal cord injury rehabilitation. J Spinal Cord Med. 2013; 36 (5): 380–99.
- Lee M.H., Tian M.Y., Kim M.K. The Effectiveness of Overground Robot Exoskeleton Gait Training on Gait Outcomes, Balance, and Motor Function in Patients with Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sci. 2024; 14 (8): 834. doi: 10.3390/brainsci14080834
Supplementary files

