Bacteriophages: past, present, future

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In recent years, there has been a catastrophic increase in the resistance of bacterial strains to antibacterial drugs. Millions of deaths per year associated with antimicrobial resistance are already being reported worldwide. The spread of the pandemic new coronavirus infection COVID-19 has contributed to a significant increase in the burden on health care facilities, overuse of antibiotics, which in turn has led to an even greater spread of resistant strains in hospitals. At the same time, numerous successful results of bacteriophages use in clinical and preventive medicine give the hope for their effective use as an alternative to ethiotropic therapy, especially in cases of the threat of resistant bacterial strains spread. Further research into the biological properties of bacteriophages and their interaction with bacterial and human cells will make it possible to treat and prevent many infectious diseases with bacteriophages.

Full Text

Restricted Access

About the authors

L. S Konkova

Pasteur Institute of Epidemiology and Microbiology

Email: olgaburgasova@mail.ru

Professor

L. A Kraeva

Pasteur Institute of Epidemiology and Microbiology; S.M. Kirov Military Medical Academy

Email: olgaburgasova@mail.ru

доктор медицинских наук, профессор

O. A Burgasova

Russian Peoples Friendship University; N.F. Gamaleya National Research Center for Epidemiology and Microbiology

Email: olgaburgasova@mail.ru
Professor

S. V Dolinny

Infectious Diseases Clinical Hospital One, Moscow Department of Public Health

Author for correspondence.
Email: olgaburgasova@mail.ru

References

  1. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022. doi: 10.1016/S0140-6736(21 )02724-0. Available at: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02724-0/fulltext
  2. Брусина Е.Б., Дроздова О.М., Алешкин А.В. и др. Проблемы комплексного применения бактериофагов для профилактики и лечения. Эпидемиология и инфекционные болезни. 2018; 3: 11-5 doi: 10.18565/epidem.2018.3.11-5
  3. Бондаренко В.М. Роль условно-патогенных бактерий кишечника в поли-органной патологии человека. М.: Триада, 2007; с. 60.
  4. Бондаренко В.М. Клинический эффект и пути рационально использования лечебных бактериофагов в медицинской практике. Фарматека. 2011; 1 (214): 29-34
  5. Летаров А.В. Современные концепции биологии бактериофагов. М.: ТД ДеЛи, 2019; 384 с.
  6. Campbell A. The future of bacteriophage biology. Nat Rev Genet. 2003; 4 (6): 471-7. doi: 10.1038/nrg1089.
  7. Ackermann H.W. 5500 Phages examined in the electron microscope. Arch Virol. 2007; 152 (2): 227-43. doi: 10.1007/s00705-006-0849-1
  8. Fokine A. Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc Natl Acad Sci. 2005; 102 (20): 7163-8. doi: 10.1073/pnas.0502164102
  9. Storms Z.J., Sauvageau D. Modeling tailed bacteriophage adsorption: Insight into mechanisms. Virology. 2015; 485: 355-62. doi: 10.1016/j.virol.2015.08.007
  10. Silva B., Storms Z., Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett. 2016; 363 (4): fnw002. doi: 10.1093/femsle/ fnw002
  11. Leiman P.G., Shneider M.M. Contractile tail machines of bacteriophages. Adv Exp Med Biol. 2012; 726: 93-114. doi: 10.1007/978-1-4614-0980-9_5
  12. Акимкин В.Г., Трунилина Р.А., Шахлин Е.В. Клинико- эпидемиологические особенности нозокомиального сальмоннелеза у больных с хирургической патологией. Магнитогорск: ООО «АС», 2008; 172 с.
  13. Kuchment A. The Forgotten Cure. The Past and Future of Phage Therapy. Springer Science & Business Media, 2011; 136 p. doi: 10.1007/978-1-46140251-0
  14. Chanishvili N. Phage therapy - history from Twort and d’Herelle through Soviet experience to current approaches. Adv Virus Res. 2012; 83: 3-40. doi: 10.1016/B978-0-12-394438-2.00001-3
  15. Бесчастнов В.В., Юданова Т.Н., Бегун С.М. и др. Использование гидрогелевых раневых покрытий в комбинации с бактериофагами. Вестник экспериментальной и клинической хирургии. 2020; 13 (3): 279-84 doi: 10.18499/2070-478X-2020- 13-3-279-284
  16. Jault P., Leclerc T., Jennes S., et. al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019; 19: 35-45. DOI: 10.1016/ S1473-3099(18)30482-1
  17. Morozova V.V., Vlassov V.V., Tikunova N.V. Applications of Bacteriophages in the Treatment of Localized Infections in Humans. Front Microbiol. 2018; 9:1696. doi: 10.3389/fmicb.2018.01696
  18. Леонтьев А.Е., Павленко И.В., Ковалишена О.В. и др. Применение фаготерапии в лечении ожоговых больных. Современные технологии в медицине. 2020; 12 (3): 95-104 doi: 10.17691/stm2020.12.3.12
  19. Rubalskii E., Ruemke S., Salmoukas C. et al. Fibrin glue as a local drug-delivery system for bacteriophage PA5. Sci Rep. 2019; 9 (1): 1-8. DOI: 10.1038/ s41598-018-38318-4
  20. Morozova Y.N., Kozlova Y.N., Tikunova N.V. et al. Bacteriophage treatment of infected diabetic foot ulcers. Methods in molecular biology. 2018; 1693: 151-8. doi: 10.1007/978-1-4939-7395-8_13
  21. Donlan R.M. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 2009; 17 (2): 66-72. doi: 10.1016/j.tim.2008.11.002
  22. Herridge P., Shibu P., O’Shea1 J. et. al. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J. Med Microbiol. 2020; 69: 176-94. doi: 10.1099/jmm.0.001141
  23. Duplessis C., Biswas B., Hanisch B. et al. Refractory pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy. J. Pediatric Infect Dis Soc. 2018; 7 (3): 253-6. doi: 10.1093/jpids/pix056
  24. Schooley R.T., Biswas B., Gill J.J. et al. Development and use of personalized bacteriophagebased therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2017; 61 (10): e00954-17. doi: 10.1128/AAC.00954-17
  25. Ujmajuridze A., Chanishvili N., Goderdzishvili M. et al. Adapted Bacteriophages for Treating Urinary Tract Infections. Front Microbiol. 2018; 9: 1832. doi: 10.3389/fmicb.2018.01832
  26. Leitner L., Sybesma W., Chanishvili N. et al. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 2017; 17 (1): 90. doi: 10.1186/s12894-017-0283-6
  27. Bao J., Wu N., Zeng Y. et al. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae. Emerg Microbes Infect. 2020; 9 (1): 771-4. doi: 10.1080/22221751.2020.1747950
  28. Zalewska-Piątek B., Piątek R. Phage Therapy as a Novel Strategy in the Treatment of Urinary Tract Infections Caused by E. coli. Antibiotics (Basel). 2020; 9 (6): 304. doi: 10.3390/antibiotics9060304
  29. Gorski A., Jonczyk-Matysiak E., Lusiak-Szelachowska M. et al. Phage Therapy in Prostatitis: Recent Prospects. Front Microbiol. 2018; 9: 1434. doi: 10.3389/fmicb.2018.01434
  30. Xiong S., Liu X., Deng W. et al. Pharmacological Interventions for Bacterial Prostatitis. Front Pharmacol. 2020; 11: 504. DOI: 10.3389/ fphar.2020.00504
  31. LaVergne S., Hamilton T., Biswas B. et al. Phage therapy for a multidrug-resistant Acinetobacter baumannii Craniectomy site infection. Open Forum Infect Dis. 2020; 5 (4): ofy064. doi: 10.1093/ofid/ofy064
  32. Junghans S., Rojas S.V., Skusa R. et al. Bacteriophages for the Treatment of Graft Infections in Cardiovascular Medicine. Antibiotics. 2021; 10 (12): 1446. doi: 10.3390/antibiotics10121446
  33. Eskenazi A., Lood C., Wubbolts J. et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun. 2022; 13: 302. doi: 10.1038/s41467-021-27656-z
  34. Nir-Paz R., Gelman D., Khouri A. et al. Successful treatment of antibiotic-resistant, polymicrobial bone infection with bacteriophages and antibiotics combination. Clin Infect Dis. 2019; 69 (11): 2015-8. doi: 10.1093/cid/ciz222
  35. Luong T., Salabarria A., Roach D. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clin Ther. 2020; 42 (9): 1659-80. doi: 10.1016/j.clinthera.2020.07.014
  36. Hesse S., Rajaure M., Wall E. et al. Phage Resistance in Multidrug-Resistant Klebsiella pneumoniae ST258 Evolves via Diverse Mutations That Culminate in Impaired Adsorption. mBio. 2020; 11 (1): e02530-19. DOI: 10.1128/ mBio.02530-19
  37. Бехтерева М.К., Иванова В.В. Место бактериофагов в терапии инфекционных заболеваний желудочно-кишечного тракта. Consilium medicum. Педиатрия. 2014; 2: 35-40
  38. Febvre H.P., Rao S., Gindin M. et al. PHAGE Study: Effects of Supplemental Bacteriophage Intake on Inflammation and Gut Microbiota in Healthy Adults. Nutrients. 2019; 11: 666. doi: 10.3390/nu11030666
  39. Козлов В.А., Тихонова Е.П., Савченко А.А. и др. Клиническая иммунология. Практическое пособие для инфекционистов. Красноярск: Поликор, 2021; 563 c.
  40. Barr J.J., Auro R., Furlan M. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci. 2013; 110 (26): 10771-6. doi: 10.1073/pnas.1305923110
  41. Anand T., Virmani N., Kumar S. et al. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J. Glob Antimicrob Resist. 2020; 21: 34-41. doi: 10.1016/j.jgar.2019.09.018

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies