Innovative technology for restoring gait patterns in patients with impaired mobility

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Gait impairment is one of the most severe and socially significant consequences of both orthopedic pathology (total knee arthroplasty – TKA) and neurological diseases (acute cerebral circulation disorder – ACCD). Restoring safe and independent locomotion is a central task of medical rehabilitation, determining patients' quality of life and their reintegration into society.

The anti-gravity treadmill (AGT), based on Differential Air Pressure technology, allows for early, dosed, and physiological gait training with precise control of axial load (from 1% to 100% of body weight). The use of AGT contributes to a significant improvement in spatiotemporal gait parameters (speed increases by 25–40%, endurance by 30–45%, step symmetry by 15–25%), reduction of pain syndrome by 35–50% on visual analogue scale, overcoming kinesiophobia, and improvement of quality of life by 20–30% on SF-36 questionnaire in patients after TKA and ACCD. The technology demonstrates high efficiency for other nosology’s: multiple sclerosis (balance improvement by 40%), Parkinson's disease (step length increases by 25%), sports rehabilitation (reduction of recovery time by 30%).

Full Text

Restricted Access

About the authors

L. A. Marchenkova

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Author for correspondence.
Email: marchenkovala@nmicrk.ru
ORCID iD: 0000-0003-1886-124X
SPIN-code: 9619-8004

Associate Professor, MD

Russian Federation, Moscow

D. O. Tulupov

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Email: marchenkovala@nmicrk.ru
ORCID iD: 0000-0001-7812-0545
SPIN-code: 9844-7885
Russian Federation, Moscow

References

  1. World Health Organization. World report on disability. Geneva: WHO, 2011.
  2. Langhorne P., Coupar F., Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009; 8 (8): 741–54. doi: 10.1016/S1474-4422(09)70150-4
  3. Hunter D.J., Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019; 393 (10182): 1745–59. doi: 10.1016/S0140-6736(19)30417-9
  4. Lee J.H., Kim E.J. Optimizing Rehabilitation Outcomes for Stroke Survivors: The Impact of Speed and Slope Adjustments in Anti-Gravity Treadmill Training. Medicina (Kaunas). 2024; 60 (4): 542. doi: 10.3390/medicina60040542
  5. Feigin V.L. et al. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021; 20 (10): 795–820. doi: 10.1016/S1474-4422(21)00252-0
  6. Atan T., Bildik Y.E., Demir Y. et al. Comparison of anti-gravity treadmill training and traditional treadmill training in patients with moderate to severe knee osteoarthritis: A randomized controlled trial. Ir J Med Sci. 2025; 194 (1): 125–36. doi: 10.1007/s11845-024-03836-w
  7. Отчет Национального регистра эндопротезирования (НГЭТР) за 2022 год. Ассоциация травматологов-ортопедов России, 2022 Report of the National Endoprosthetics Registry (NGETR) for 2022. Association of Traumatologists and Orthopedists of Russia, 2022 (in Russ.)].
  8. Корнилов Н.Н., Куляба Т.А., Филь А.С. и др. Данные регистра эндопротезирования коленного сустава РНИИТО им. Р.Р. Вредена за 2011–2013 годы. Травматология и ортопедия России. 2015; 1: 136–51 [Kornilov N.N., Kulyaba T.A., Fil A.S. et al. Data of knee arthroplasty register of Vreden Russian Research Institute of Traumatology and Orthopedics for period 2011–2013. Traumatology and Orthopedics of Russia. 2015; 1: 136–51 (in Russ.)] doi: 10.21823/2311-2905-2015-0-1-136-151
  9. Florence C.S., Bergen G., Atherly A. et al. Medical costs of fatal and nonfatal falls in older adults. J Am Geriatr Soc. 2018; 66 (4): 693–8. doi: 10.1111/jgs.15304
  10. Mehrholz J., Thomas S., Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017; 8 (8): CD002840. doi: 10.1002/14651858.CD002840.pub4
  11. Pearse E.O., Caldwell B.F., Lockwood R.J. et al. Early mobilisation after conventional knee replacement may reduce the risk of postoperative venous thromboembolism. J Bone Joint Surg Br. 2007; 89 (3): 316–22. doi: 10.1302/0301-620X.89B3.18196
  12. Grabowski A.M., Kram R. Effects of velocity and weight support on ground reaction forces and metabolic power during running. J Appl Biomech. 2008; 24 (3): 288–97. doi: 10.1123/jab.24.3.288
  13. Moher D., Liberati A., Tetzlaff J. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6 (7): e1000097. doi: 10.1371/journal.pmed.1000097
  14. Sherrington C., Herbert R.D., Maher C.G. et al. PEDro: a database of randomized trials and systematic reviews in physiotherapy. Man Ther. 2000; 5 (4): 223–6. doi: 10.1054/math.2000.0372
  15. Sterne J.A., Hernán M.A., Reeves B.C. et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016; 355: i4919. doi: 10.1136/bmj.i4919
  16. AlterG. How AlterG Works. Official Website, 2023. URL: https://alterg.com/
  17. Cutuk A., Groppo E.R., Quigley E.J. et al. Ambulation in simulated fractional gravity using a lower-body positive pressure treadmill. J Appl Physiol. 2006; 101 (3): 771–7. doi: 10.1152/japplphysiol.00644.2005
  18. Raffalt P.C., Hovgaard-Hansen L., Jensen B.R. Running on a lower-body positive pressure treadmill: VO2max, respiratory response, and vertical ground reaction force. Res Sports Med. 2013; 84 (2): 213–22. doi: 10.1080/02701367.2013.784721
  19. Apte S., Plooij M., Vallery H. Influence of body weight unloading on human gait characteristics: a systematic review. J NeuroEngineering Rehabil. 2018; 53: 1–10. doi: 10.1186/s12984-018-0380-00
  20. Lam T. et al. The effects of body-weight support treadmill training on gait recovery in stroke patients: a systematic review. Physiother Can. 2011; 63 (4): 77–90.
  21. Kelly B.T. et al. Hydrotherapy versus land-based exercises for rehabilitation after total knee arthroplasty: a systematic review. Physiother Theory Pract. 2020; 36 (4): 1–12.
  22. Raddatz M., Smoliga J., Lephart S. The Use of Anti-Gravity Treadmill in the Rehabilitation of Musculoskeletal Injuries: A Systematic Review. Sports Health. 2020; 12 (1): 74–81.
  23. Wang L., Lee M., Zhang Z. et al. Does preoperative rehabilitation for patients planning to undergo joint replacement surgery improve outcomes? A systematic review and meta-analysis of randomized controlled trials. BMJ Open. 2016; 6 (2): e009857. doi: 10.1136/bmjopen-2015-009857
  24. Bugbee W., Pulido P., Goldberg T. et al. Use of an anti-gravity treadmill for early postoperative rehabilitation after total knee replacement: a pilot study to determine safety and feasibility. Am J Orthop (Belle Mead NJ). 2016; 45 (5): E167–73.
  25. Webber S.C., Horvey K.J., Pikaluk M.T.Y. et al. Cardiovascular responses in older adults with total knee arthroplasty at rest and with exercise on a positive pressure treadmill. Eur J Appl Physiol. 2014; 114 (3): 653–62. doi: 10.1007/s00421-013-2798-1
  26. Langhorne P., Bernhardt J., Kwakkel G. Stroke rehabilitation. Lancet. 2011; 377 (9778): 1693–702. doi: 10.1016/S0140-6736(11)60325-5
  27. Hornby T.G., Straube D.S., Kinnaird C.R. et al. Importance of specificity, amount, and intensity of locomotor training to improve ambulatory function in patients poststroke. Top Stroke Rehabil. 2011; 18 (4): 293–307. doi: 10.1310/tsr1804-293
  28. Swinnen E. et al. The effectiveness of body weight-supported gait training in stroke patients. Neurorehabil Neural Repair. 2019; 33 (3): 193–9.
  29. Fisher B.E. et al. The effect of exercise training on the quality of life in patients with Parkinson's disease. Mov Disord. 2016; 31 (10): 1580–4.
  30. Raddatz M., Smoliga J., Lephart S. The Use of Anti-Gravity Treadmill in the Rehabilitation of Musculoskeletal Injuries: A Systematic Review. Sports Health. 2020; 12 (1): 74–81.
  31. Vij N., Leber C., Schmidt K. Current applications of gait analysis after total knee arthroplasty: A scoping review. J Clin Orthop Trauma. 2022; 33: 102014. doi: 10.1016/j.jcot.2022.102014
  32. Gremeaux V. et al. Analysis of the impact of a rehabilitation program using an antigravity treadmill on the functional parameters of patients after total knee arthroplasty: a randomized controlled trial. Ann Phys Rehabil Med. 2012; 55 (Suppl 1): e100–e101.
  33. Jiang Z., Zhang X., Fu Q. et al. Effects of body weight support training on balance and walking function in stroke patients: a systematic review and meta-analysis. Front Neurol. 2024; 15: 1413577. doi: 10.3389/fneur.2024.1413577
  34. Miller L., Paul L., Mattison P. Evaluation of a treadmill with partial body weight support for the rehabilitation of patients with multiple sclerosis. Mult Scler J. 2016; 22 (3 Suppl.): 795–6.
  35. Liang J., Lang S., Zheng Y. et al. The effect of anti-gravity treadmill training for knee osteoarthritis rehabilitation on joint pain, gait, and EMG: Case report. Medicine (Baltimore). 2019; 98 (18): e15386. doi: 10.1097/MD.0000000000015386
  36. Stevens-Lapsley J.E., Balter J.E., Wolfe P. et al. Early neuromuscular electrical stimulation to improve quadriceps muscle strength after total knee arthroplasty: a randomized controlled trial. Phys Ther. 2012; 92 (2): 210–26. doi: 10.2522/ptj.20110124
  37. Duncan P.W., Sullivan K.J., Behrman A.L. et al. Body-weight–supported treadmill rehabilitation after stroke. N Engl J Med. 2011; 364 (21): 2026–36. doi: 10.1056/NEJMoa1010790
  38. Sullivan K.J., Brown D.A., Klassen T. et al. Effects of task-specific locomotor and strength training in adults who were ambulatory after stroke: results of the STEPS randomized clinical trial. Phys Ther. 2007; 87 (12): 1580–602. doi: 10.2522/ptj.20060310
  39. Dobkin B.H., Apple D., Barbeau H. et al. Methods for a randomized trial of weight-supported treadmill training versus conventional training for walking during inpatient rehabilitation after incomplete traumatic spinal cord injury. Neurorehabil Neural Repair. 2003; 17 (3): 153–67. doi: 10.1177/0888439003255508
  40. Moseley A.M., Stark A., Cameron I.D. et al. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2005; 4: CD002840. doi: 10.1002/14651858.CD002840.pub2
  41. Ada L., Dean C.M., Vargas J. et al. Mechanically assisted walking with body weight support results in more independent walking than assisted overground walking in non-ambulatory patients early after stroke: a systematic review. J Physiother. 2010; 56 (3): 153–61. doi: 10.1016/s1836-9553(10)70020-5
  42. van Hedel H.J. et al. Improving gait assessment in neurological disorders: towards a standardized approach. Neurorehabil Neural Repair. 2018; 32 (1): 3–12.
  43. Paton M. et al. Using an anti-gravity treadmill for rehabilitation of a patient with morbid obesity. J Rehabil Med Clin Commun. 2017; 1: 1000003.
  44. Bruetsch A.P. et al. The effects of anti-gravity treadmill training on balance and gait in older adults. Aging Clin Exp Res. 2021; 33 (5): 1343–52.
  45. Fox E.J. et al. The use of robotic and body weight support systems in spinal cord injury rehabilitation. J Spinal Cord Med. 2013; 36 (5): 380–99.
  46. Lee M.H., Tian M.Y., Kim M.K. The Effectiveness of Overground Robot Exoskeleton Gait Training on Gait Outcomes, Balance, and Motor Function in Patients with Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sci. 2024; 14 (8): 834. doi: 10.3390/brainsci14080834

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russkiy Vrach Publishing House