Предсказание сердечно-сосудистых событий при помощи комплексной оценки факторов риска с использованием методов машинного обучения
- Авторы: Гаврилов Д.В1, Серова Л.М1, Корсаков И.Н1, Гусев А.В1, Новицкий Р.Э1, Кузнецова Т.Ю2
-
Учреждения:
- ООО «К-Скай»
- Петразоводский государственный университет
- Выпуск: Том 31, № 5 (2020)
- Страницы: 41-46
- Раздел: Статьи
- URL: https://journals.eco-vector.com/0236-3054/article/view/114239
- DOI: https://doi.org/10.29296/25877305-2020-08
- ID: 114239
Цитировать
Полный текст



Аннотация
Ключевые слова
Полный текст

Об авторах
Д. В Гаврилов
ООО «К-Скай»
Email: dgavrilov@webiomed.ai
Петрозаводск
Л. М Серова
ООО «К-Скай»кандидат технических наук Петрозаводск
И. Н Корсаков
ООО «К-Скай»Петрозаводск
А. В Гусев
ООО «К-Скай»кандидат технических наук Петрозаводск
Р. Э Новицкий
ООО «К-Скай»Петрозаводск
Т. Ю Кузнецова
Петразоводский государственный университетдоктор медицинских наук Петрозаводск
Список литературы
- WHO Global Action Plan for the Prevention and Control of Non-communicable Diseases 2013-2020 (resolution WHA66.10, 27 May 2013) Available at: http:// apps.who.int/gb/ebwha/pdf_files/WHA66/A66_R10-en.pdf?ua=1 [Accessed 27 Mar. 2020].
- Федеральная служба государственной статистики
- Паспорт национального проекта «Здравоохранение» (утв. Президиумом Совета при Президенте РФ по стратегическому развитию и национальным проектам, протокол от 24.12.2018 №6)
- Шляхто E.E., Звартау Н.Э., Виллевальде C.E. и др. Система управления сердечно-сосудистыми рисками: предпосылки к созданию, принципы организации, таргетные группы. Рос. кардиол. журн. 2019; 24 (11): 69-82
- Белялов Ф.И. Шкалы прогноза сердечно-сосудистых заболеваний. Архив внутренней медицины. 2015; 5: 19-21
- Бойцов С.А., Шальнова С.А., Деев А.Д. и др. Моделирование риска развития сердечно-сосудистых заболеваний и их осложнений на индивидуальном и групповом уровнях. Тер. арх. 2013; 85 (9): 4-10
- Weng S.F., Reps J., Kai J. et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017; 12 (4): e0174944. doi: 10.1371/journal.pone.0174944
- Angraal S., Mortazavi B.J., Gupta A. et al. Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction. JACC: Heart Failure. 2020; 8 (1): 12-21. https://doi.org/10.1016/jjchf.2019.06.013
- Meyer A., Zverinski D., Pfahringer B. et al. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir. Med. 2018; 6 (12): 905-14. https://doi.org/10.1016/S2213-2600(18)30300-X
- Kuznetsova T., Novitskiy R., Gusev A. et al. Deep and machine learning models to improve risk prediction of cardiovascular disease using data extraction from electronic health records. Eur. Heart J. 2019; 40 (Suppl. 1): 1923-4. https:// doi.org/10.1093/eurheartj/ehz748.0670
- Clinical Practice Research Datalink, reference number: CPRD00039761. Available at: https://www.cprd.com
- European guidelines on cardiovascular disease prevention in clinical practice: third joint task force of European and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of eight societies and by invited experts). Eur. J. Cardiovasc. Prev. Rehabil. 2003; 10 (4): 1-10. doi: 10.1097/01.hjr.0000087913.96265.e2
- Conroy R.M., Pyorala K., Fitzgerald A.P. et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur. Heart J. 2003; 24: 987-1003. doi: 10.1016/s0195-668x(03)00114-3
- Beunzaa J.-J., Puertasa E. et al. Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease). J. Biomed. Inform. 2019; 97: 103257. D0I:10.1016/jjbi.2019.103257
- Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 2006; 27 (8): 861-74. https://doi.org/10.1016/j.patrec.2005.10.010
Дополнительные файлы
