Cardiovascular diseases prediction by integrated risk factors assessment by means of machine learning


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To develop a model by machine learning to predict the risk of cardiovascular diseases (CVD) and validate the model using Russian medical data. Materials and methods. The data set was obtained from the Framingham study, consisting of 4,363 patients without CVD, 852 (19.5%) of which died of myocardial infarction and stroke within 10 years of observation. Incoming model features: gender, age, systolic blood pressure, cholesterol, smoking, body mass index, heart rate. The original data set was divided into 2 parts: the training data set (80% of the records) and the validate data set (the remaining 20%). Additionally, the model was evaluated by an external data set included 411 depersonalized patient data from the Russian citizens. Results. The WML.CVD.Score model was created by the serial neural network with one input, two hidden and one output layer. Accuracy results on a training dataset: Accuracy 81.15%, AUC 0.80. The same indicators on the validate data set were: Accuracy 81.1%, AUC 0.76. Test results for the test data set: Accuracy 79.07, AUC 0.86. On the Russian test data, the AUC for the SCORE scale was 0.81 versus 0.86 for the developed model, which showed the validity of the use of machine learning in order to increase the predictive model. Conclusion. The developed model has demonstrated high accuracy to CVD predicting in both internal and external validation. The model can be used in medical practice for patients in Russia.

Full Text

Restricted Access

About the authors

D. V Gavrilov

K-SkAI

Email: dgavrilov@webiomed.ai
Petrozavodsk

L. M Serova

K-SkAI

Candidate of Engineering Sciences Petrozavodsk

I. N Korsakov

K-SkAI

Candidate of Physico-Mathematical Sciences Petrozavodsk

A. V Gusev

K-SkAI

Candidate of Engineering Sciences Petrozavodsk

R. E Novitsky

K-SkAI

Petrozavodsk

T. Yu Kuznetsova

Petrozavodsk State University

MD Petrozavodsk

References

  1. WHO Global Action Plan for the Prevention and Control of Non-communicable Diseases 2013-2020 (resolution WHA66.10, 27 May 2013) Available at: http:// apps.who.int/gb/ebwha/pdf_files/WHA66/A66_R10-en.pdf?ua=1 [Accessed 27 Mar. 2020].
  2. Федеральная служба государственной статистики
  3. Паспорт национального проекта «Здравоохранение» (утв. Президиумом Совета при Президенте РФ по стратегическому развитию и национальным проектам, протокол от 24.12.2018 №6)
  4. Шляхто E.E., Звартау Н.Э., Виллевальде C.E. и др. Система управления сердечно-сосудистыми рисками: предпосылки к созданию, принципы организации, таргетные группы. Рос. кардиол. журн. 2019; 24 (11): 69-82
  5. Белялов Ф.И. Шкалы прогноза сердечно-сосудистых заболеваний. Архив внутренней медицины. 2015; 5: 19-21
  6. Бойцов С.А., Шальнова С.А., Деев А.Д. и др. Моделирование риска развития сердечно-сосудистых заболеваний и их осложнений на индивидуальном и групповом уровнях. Тер. арх. 2013; 85 (9): 4-10
  7. Weng S.F., Reps J., Kai J. et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017; 12 (4): e0174944. doi: 10.1371/journal.pone.0174944
  8. Angraal S., Mortazavi B.J., Gupta A. et al. Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction. JACC: Heart Failure. 2020; 8 (1): 12-21. https://doi.org/10.1016/jjchf.2019.06.013
  9. Meyer A., Zverinski D., Pfahringer B. et al. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir. Med. 2018; 6 (12): 905-14. https://doi.org/10.1016/S2213-2600(18)30300-X
  10. Kuznetsova T., Novitskiy R., Gusev A. et al. Deep and machine learning models to improve risk prediction of cardiovascular disease using data extraction from electronic health records. Eur. Heart J. 2019; 40 (Suppl. 1): 1923-4. https:// doi.org/10.1093/eurheartj/ehz748.0670
  11. Clinical Practice Research Datalink, reference number: CPRD00039761. Available at: https://www.cprd.com
  12. European guidelines on cardiovascular disease prevention in clinical practice: third joint task force of European and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of eight societies and by invited experts). Eur. J. Cardiovasc. Prev. Rehabil. 2003; 10 (4): 1-10. doi: 10.1097/01.hjr.0000087913.96265.e2
  13. Conroy R.M., Pyorala K., Fitzgerald A.P. et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur. Heart J. 2003; 24: 987-1003. doi: 10.1016/s0195-668x(03)00114-3
  14. Beunzaa J.-J., Puertasa E. et al. Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease). J. Biomed. Inform. 2019; 97: 103257. D0I:10.1016/jjbi.2019.103257
  15. Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 2006; 27 (8): 861-74. https://doi.org/10.1016/j.patrec.2005.10.010

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies