Роль кишечной микробиоты в старении и поддержании активного долголетия. Часть 1

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассматривается роль кишечной микробиоты в старении и поддержании активного долголетия. В первой части статьи приводятся характеристики здорового микробиома, его изменения при старении и особенности состава кишечного микробиома долгожителей. Подчеркнуто значение высокого биоразнообразия микробиома в поддержании активного долголетия. Раскрыта роль кишечной проницаемости и новых биомакеров, оценивающих ее состояние (в том числе зонулина), в поддержании здоровья и в развитии дисбиоза кишечника. Выделены отдельные группы микроорганизмов, которые ассоциируются с долголетием (такие как Verrucomicrobia, к которым относится Akkermansia), отмечена важная роль соотношения Bacteroidetes – Firmicutes. Обсуждаются вопросы влияния возраст-ассоциированного изменения микробиома на здоровье, связь изменения микробиома с физическими нагрузками, возможность применения анализа микробиома для предсказания биологического возраста, корреляция состава микробиома с биомаркерами здоровья и болезней.

Полный текст

Доступ закрыт

Об авторах

А. К. Ратникова

Health Care Resort «Первая Линия»; Северо-Западный окружной научно-клинический центр им. Л.Г. Соколова Федерального медико-биологического агентства России

Автор, ответственный за переписку.
Email: ya.ashikhmin@gmail.com
ORCID iD: 0000-0003-3279-6448

кандидат медицинских наук

Россия, Санкт-Петербург; Санкт-Петербург

М. О. Грудина

Health Care Resort «Первая Линия»

Email: ya.ashikhmin@gmail.com
ORCID iD: 0000-0002-1607-3576
Россия, Санкт-Петербург

В. А. Ратников

Северо-Западный окружной научно-клинический центр им. Л.Г. Соколова Федерального медико-биологического агентства России

Email: ya.ashikhmin@gmail.com
ORCID iD: 0000-0002-9645-8408

доктор медицинских наук, профессор

Россия, Санкт-Петербург

О. Н. Дикур

Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет); Клиника «Рассвет»

Email: ya.ashikhmin@gmail.com
ORCID iD: 0000-0002-4442-6447

кандидат медицинских наук

Россия, Москва; Москва

Я. И. Ашихмин

Health Care Resort «Первая Линия»; Центр экспертизы и контроля качества медицинской помощи Минздрава России; Клиника «ДокМед»

Email: ya.ashikhmin@gmail.com
ORCID iD: 0000-0002-1243-5701

кандидат медицинских наук

Россия, Санкт-Петербург; Москва; Москва

Список литературы

  1. Lopez-Otin C., Blasco M.A., Partridge L. et al. The hallmarks of aging. Cell. 2013; 153 (6): 1194–217. doi: 10.1016/j.cell.2013.05.039
  2. Wang W-L., Xu S-Y., Ren Z-G. et al. Application of metagenomics in the human gut microbiome. World J Gastroenterol. 2015; 21 (3): 803–14. doi: 10.3748/wjg.v21.i3.803
  3. Schoultz I., Keita Å.V. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells. 2020; 9 (8): 1909. doi: 10.3390/cells9081909
  4. Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019; 68 (8): 1516–26. doi: 10.1136/gutjnl-2019-318427
  5. Симаненков В.И., Maeв И.В., Ткачева Щ.Н. и др. Синдром повышенной эпителиальной проницаемости в клинической практике. Мультидисциплинарный национальный консенсус. Кардиоваскулярная терапия и профилактика. 2021; 20 (1): 2758 [Simanenkov V.I., Maev I.V., Tkacheva O.N. et al. Syndrome of increased epithelial permeability in clinical practice. Multidisciplinary national Consensus. Cardiovascular Therapy and Prevention. 2021; 20 (1): 2758 (in Russ.)]. doi: 10.15829/1728-8800-2021-2758
  6. Cheung K.S., Hung I.F., Chan P.P. et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and metaanalysis. Gastroenterology. 2020; 159 (1): 81–95. doi: 10.1053/j.gastro.2020.03.065
  7. Fordtran J.S., Rector F.C., Ewton M.F. et al. Permeability characteristics of the human small intestine. J Clin Invest. 1965; 44 (12): 1935–44. doi: 10.1172/JCI105299
  8. Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim Sci J. 2020; 91 (1): 13357. doi: 10.1111/asj.13357
  9. Ashikhmin Y.I., Syrkin A.L., Zamyatnin A.A. et al. The Gut Microbiota in Cardiovascular Diseases: From Biomarkers and Potential Targets to Personalized Interventions. Curr Pharmacogenomics Person Med. 2018; 16 (1): 75–85. doi: 10.2174/1875692116666180511170329
  10. Canfora E.E., Jocken J.W., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015; 11 (10): 577–91. doi: 10.1038/nrendo.2015.128
  11. Gomma E.Z. Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek. 2020; 113 (12): 2019–40. doi: 10.1007/s10482-020-01474-7
  12. Conway J., Duggal N.А. Ageing of the gut microbiome: Potential influences on immune senescence and inflammageing. Ageing Res Rev. 2021; 68: 101323. doi: 10.1016/j.arr.2021.101323
  13. Tojo R. Intestinal microbiota in health and disease: Role of bifdobacteria in gut homeostasis. World J Gastroenterol. 2014; 20 (41): 15163. doi: 10.3748/wjg.v20.i41.15163
  14. Santoro A., Martucci M., Conte M. et al. Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Rev. 2020; 64: 101142. doi: 10.1016/j.arr.2020.101142
  15. Santoro A., Ostan R., Candela M. et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci. 2018; 75 (1): 129–48. doi: 10.1007/s00018-017-2674-y
  16. Шемеровский К.А., Селиверстов П.В., Бочкарев М.В. и др. Хронофизиологический механизм регулярности циркадианного ритма эвакуаторной функции кишечника. Экспериментальная и клиническая гастроэнтерология. 2019; 5: 150–3 [Shemerovsky K.A., Seliverstov P.V., Bochkarev M.V. et al. Chronophysiological mechanism of the circadian rhythm Regularity of the intestine evacuation function. Experimental and Clinical Gastroenterology. 2019; 5: 150–3 (in Russ.)]. doi: 10.31146/1682-8658-ecg-165-5-150-153
  17. Kong F., Hua Y., Zeng B. et al. Gut microbiota signatures of longevity. Curr Biol. 2016; 26 (18): R832–R833. doi: 10.1016/j.cub.2016.08.015
  18. Badal V.D., Vaccariello E.D., Murray E.R. et al. The Gut Microbiome, Aging, and Longevity: A Systematic Review. Nutrients. 2020; 12 (12): 3759. doi: 10.3390/nu12123759
  19. Kim B.-S., Choi C.W., Shin H. et al. Comparison of the Gut Microbiota of Centenarians in Longevity Villages of South Korea with Those of Other Age Groups. J Microbiol Biotechnol. 2019; 29 (3): 429–40. doi: 10.4014/jmb.1811.11023
  20. Wu L., Zeng T., Zinellu A. et al. A Cross-Sectional Study of Compositional and Functional Profiles of Gut Microbiota in Sardinian Centenarians. mSystems. 2019; 4 (4): 00325-19. doi: 10.1128/msystems.00325-19
  21. Kushugulova A.R., Kozhakhmetov S.S., Baiskhanova D.M. et al. Gut microbiome diversity in Kazakhstani women of different age groups. Int J Probiotics Prebiotics. 2015; 10 (2/3): 97–108. doi: 10.11134/btp.4.2014.1
  22. Drago L., Toscano M., Rodighiero V. et al. Cultivable and Pyrosequenced Fecal Microflora in Centenarians and Young Subjects. J Clin Gastroenterol. 2012; 46: S81–S84. doi: 10.1097/mcg.0b013e3182693982
  23. Odamaki T., Kato K., Sugahara H. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016; 16 (1): 1–12. doi: 10.1186/s12866-016-0708-5
  24. Kashtanova D.A., Tkacheva O.N., Doudinskaya E.N. et al. Gut Microbiota in Patients with Deferent Metabolic Statuses: Moscow Study. Microorganisms. 2018; 6 (4): 98. doi: 10.3390/microorganisms6040098
  25. Biagi E., Franceschi C., Rampelli S. et al. Gut Microbiota and Extreme Longevity. Curr Biol. 2016; 26 (11): 1480–5. doi: 10.1016/j.cub.2016.04.016
  26. Waters J.L., Ley R.E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019; 17 (1): 83. doi: 10.1186/s12915-019-0699-4
  27. Everard A., Belzer C., Geurts L. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013; 110 (22): 9066–71. doi: 10.1073/pnas.1219451110
  28. Wilmanski T., Diener C., Rappaport N. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab. 2021; 3 (2): 274–86. doi: 10.1038/s42255-021-00348-0
  29. Gevers D., Kugathasan S., Denson L.A. et al. The Treatment-Naive Microbiome in New-Onset Crohn’s Disease. Cell Host Microbe. 2014; 15 (3): 382–92. doi: 10.1016/j.chom.2014.02.005
  30. Wu H.-J., Ivanov I.I., Darce J. et al. Gut-Residing Segmented Filamentous Bacteria Drive Autoimmune Arthritis via T Helper 17 Cells. Immunity. 2010; 32 (6): 815–27. doi: 10.1016/j.immuni.2010.06.001
  31. Manor O., Dai C.L., Kornilov S.A. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020; 11 (1): 5206. doi: 10.1038/s41467-020-18871-1
  32. Селиверстов П.В., Радченко В.Г., Сафронова И.Г. и др. Взаимоотношения печени и кишечника на фоне дисбаланса микрофлоры толстой кишки. Гастроэнтерология Санкт-Петербурга. 2010; 2-3: 15–8 [Seliverstov P.V., Radchenko V.G., Safronova I.G. et al. Relationship of liver and intestine on the background of imbalance of colon microflora. Gastroenterology of St. Petersburg. 2010; 2-3: 15–8 (in Russ.)].
  33. Gupta V.K., Kim M., Bakshi U. et al. A predictive index for health status using species-level gut microbiome profiling people. Nat Commun. 2020; 11 (1): 4635. doi: 10.1038/s41467-020-18476-8
  34. Nie P., Li Z., Wang Y. et al. Gut microbiome interventions in human health and diseases. Med Res Rev. 2019; 39 (6): 2286–313. doi: 10.1002/med.21584

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах