Современные представления о механизмах развития преэклампсии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В последние годы двухэтапная модель преэклампсии (ПЭ) была обновлена. В обзоре рассматриваются современные представления о патофизиологии ПЭ. Особое внимание уделяется исследованиям ремоделирования маточных артерий, а также роли микроРНК в ПЭ.

Полный текст

Доступ закрыт

Об авторах

А. В. Дудникова

Клиника Кубанского государственного медицинского университета Минздрава России

Автор, ответственный за переписку.
Email: avdudnikova@yandex.ru
ORCID iD: 0000-0003-2601-7831

кандидат медицинских наук

Россия, Краснодар

Е. А. Кончакова

Кубанский государственный медицинский университет Минздрава России

Email: avdudnikova@yandex.ru
Россия, Краснодар

Э. А. Бедикян

Кубанский государственный медицинский университет Минздрава России

Email: avdudnikova@yandex.ru
Россия, Краснодар

Е. Р. Ершова

Кубанский государственный медицинский университет Минздрава России

Email: avdudnikova@yandex.ru
Россия, Краснодар

Р. В. Агутенков

Кубанский государственный медицинский университет Минздрава России

Email: avdudnikova@yandex.ru
Россия, Краснодар

Список литературы

  1. Ananth C.V., Lavery J.A., Friedman A.M. et al. Serious Maternal Complications in Relation to Severe Pre-Eclampsia: A Retrospective Cohort Study of the Impact of Hospital Volume. BJOG. 2017; 124: 1246–53. doi: 10.1111/1471-0528.14384
  2. Brown M.A., Magee L.A., Kenny L.C. et al. The Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis & Management Recommendations for International Practice. Pregnancy Hypertens. 2018; 13: 291–310. doi: 10.1016/j.preghy.2018.05.004
  3. Irgens H.U., Reisaeter L., Irgens L.M. et al. Long Term Mortality of Mothers and Fathers after Pre-Eclampsia: Population Based Cohort Study. BMJ. 2001; 323: 1213–7. doi: 10.1136/bmj.323.7323.1213
  4. Ferreira I., Peeters L.L., Stehouwer C.D.A. Preeclampsia and Increased Blood Pressure in the Offspring: Meta-Analysis and Critical Review of the Evidence. J Hypertens. 2009; 27: 1955–9. doi: 10.1097/HJH.0b013e328331b8c6
  5. Wu P., Haththotuwa R., Kwok C.S. et al. Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis. Circ Cardiovasc Qual Outcomes. 2017; 10: e003497. doi: 10.1161/CIRCOUTCOMES.116.003497
  6. Pankiewicz K., Szczerba E., Maciejewski T. et al. Non-Obstetric Complications in Preeclampsia. Menopause Rev. 2019; 18: 99–109. doi: 10.5114/pm.2019.85785
  7. Wu C.-C., Chen S.-H., Ho C.-H., et al. End-Stage Renal Disease after Hypertensive Disorders in Pregnancy. Am J Obstet Gynecol. 2014; 210: 147.e1–147.e8. doi: 10.1016/j.ajog.2013.09.027
  8. Dai L., Chen Y., Sun W. et al. Association Between Hypertensive Disorders During Pregnancy and the Subsequent Risk of End-Stage Renal Disease: A Population-Based Follow-Up Study. J Obstet Gynaecol Can. 2018; 40: 1129–38. doi: 10.1016/j.jogc.2018.01.022
  9. Vikse B.E. Pre-Eclampsia and the Risk of Kidney Disease. Lancet Lond Engl. 2013; 382: 104–6. doi: 10.1016/S0140-6736(13)60741-2
  10. Rolnik D.L., Wright D., Poon L.C. et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med. 2017; 377: 613–22. doi: 10.1056/NEJMoa1704559
  11. Committee on Obstetric Practice Committee Opinion No. 692: Emergent Therapy for Acute-Onset, Severe Hypertension during Pregnancy and the Postpartum Period. Obstet Gynecol. 2017; 129: e90–e95. doi: 10.1097/AOG.0000000000002019
  12. Dhariwal N.K., Lynde G.C. Update in the Management of Patients with Preeclampsia. Anesthesiol Clin. 2017; 35: 95–106. doi: 10.1016/j.anclin.2016.09.009
  13. Redman C.W. Current Topic: Pre-Eclampsia and the Placenta. Placenta. 1991; 12: 301–8. doi: 10.1016/0143-4004(91)90339-H
  14. Roberts J.M., Redman C.W. Pre-Eclampsia: More than Pregnancy-Induced Hypertension. Lancet Lond Engl. 1993; 341: 1447–51. doi: 10.1016/0140-6736(93)90889-O
  15. Rana S., Burke S.D., Karumanchi S.A. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am J Obstet Gynecol. 2022; 226 (2S): S1019–S1034. doi: 10.1016/j.ajog.2020.10.022
  16. Chiarello D.I., Abad C., Rojas D. et al. Oxidative Stress: Normal Pregnancy versus Preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2020; 1866: 165354. doi: 10.1016/j.bbadis.2018.12.005
  17. Redman C.W., Sargent I.L., Staff A.C. IFPA Senior Award Lecture: Making Sense of Pre-Eclampsia – Two Placental Causes of Preeclampsia? Placenta. 2014;35:S20–S25. doi: 10.1016/j.placenta.2013.12.008
  18. Staff A.C. The Two-Stage Placental Model of Preeclampsia: An Update. J Reprod Immunol. 2019; 134-135: 1–10. doi: 10.1016/j.jri.2019.07.004
  19. Cox L.S., Redman C. The Role of Cellular Senescence in Ageing of the Placenta. Placenta. 2017; 52: 139–45. doi: 10.1016/j.placenta.2017.01.116
  20. Albrecht E.D., Pepe G.J. Regulation of Uterine Spiral Artery Remodeling: A Review. Reprod Sci Thousand Oaks Calif. 2020; 27: 1932–42. doi: 10.1007/s43032-020-00212-8
  21. Sato Y. Endovascular Trophoblast and Spiral Artery Remodeling. Mol Cell Endocrinol. 2020; 503: 110699. doi: 10.1016/j.mce.2019.110699
  22. Shields C.A., McCalmon M., Ibrahim T. et al. Placental Ischemia-Stimulated T-Helper 17 Cells Induce Preeclampsia-Associated Cytolytic Natural Killer Cells during Pregnancy. Am J Physiol Regul Integr Comp Physiol. 2018; 315: R336–R343. doi: 10.1152/ajpregu.00061.2018
  23. Nakimuli A., Chazara O., Hiby S.E. et al. A KIR B Centromeric Region Present in Africans but Not Europeans Protects Pregnant Women from Pre-Eclampsia. Proc Natl Acad Sci USA. 2015; 112: 845–50. doi: 10.1073/pnas.1413453112
  24. Socha M.W., Malinowski B., Puk O. et al. The Role of NF-κB in Uterine Spiral Arteries Remodeling, Insight into the Cornerstone of Preeclampsia. Int J Mol Sci. 2021; 22: 704. doi: 10.3390/ijms22020704
  25. Timokhina E., Strizhakov A., Ibragimova S. et al. Matrix Metalloproteinases MMP-2 and MMP-9 Occupy a New Role in Severe Preeclampsia. J Pregnancy. 2020; 2020: 8369645. doi: 10.1155/2020/8369645
  26. Ueda M., Sato Y., Horie A. et al. Endovascular Trophoblast Expresses CD59 to Evade Complement-Dependent Cytotoxicity. Mol Cell Endocrinol. 2019; 490: 57–67. doi: 10.1016/j.mce.2019.04.006
  27. Youssef L., Miranda J., Blasco M. et al. Complement and Coagulation Cascades Activation Is the Main Pathophysiological Pathway in Early-Onset Severe Preeclampsia Revealed by Maternal Proteomics. Sci Rep. 2021; 11: 3048. doi: 10.1038/s41598-021-82733-z
  28. Lokki A.I., Teirilä L., Triebwasser M. et al. Dysfunction of Complement Receptors CR3 (CD11b/18) and CR4 (CD11c/18) in Preeclampsia: A Genetic and Functional Study. BJOG. 2021; 128 (8): 1282–91. doi: 10.1111/1471-0528.16660
  29. Gallardo-Vara E., Gamella-Pozuelo L., Perez-Roque L. et al. Potential Role of Circulating Endoglin in Hypertension via the Upregulated Expression of BMP4. Cells. 2020; 9: 988. doi: 10.3390/cells9040988
  30. Pérez-Roque L., Núñez-Gómez E., Rodriguez-Barbero A. et al. Pregnancy-Induced High Plasma Levels of Soluble Endoglin in Mice Lead to Preeclampsia Symptoms and Placental Abnormalities. Int J Mol Sci. 2020; 22: 165. doi: 10.3390/ijms22010165
  31. Hu R., Jin H., Zhou S. et al. Proteomic Analysis of Hypoxia-Induced Responses in the Syncytialization of Human Placental Cell Line BeWo. Placenta. 2007; 28: 399–407. doi: 10.1016/j.placenta.2006.07.005
  32. Sattar Taha A., Zahraei Z., Al-Hakeim H.K. Serum Apelin and Galectin-3 in Preeclampsia in Iraq. Hypertens Pregnancy. 2020; 39: 379–86. doi: 10.1080/10641955.2020.1777300
  33. Ruikar K., Aithal M., Shetty P. et al. Placental Expression and Relative Role of Anti-Inflammatory Annexin A1 and Animal Lectin Galectin-3 in the Pathogenesis of Preeclampsia. Indian J Clin Biochem. 2022; 37 (1): 60–8. doi: 10.1007/s12291-020-00952-z
  34. Than N.G., Romero R., Xu Y. et al. Evolutionary Origins of the Placental Expression of Chromosome 19 Cluster Galectins and Their Complex Dysregulation in Preeclampsia. Placenta. 2014; 35: 855–65. doi: 10.1016/j.placenta.2014.07.015
  35. Liu Y., Meng H., Xu S. et al. Galectins for Diagnosis and Prognostic Assessment of Human Diseases: An Overview of Meta-Analyses. Med Sci Monit Int Med J Exp Clin Res. 2020; 26: e923901. doi: 10.12659/MSM.923901
  36. Szewczyk G., Pyzlak M., Pankiewicz K. et al. The Potential Association between a New Angiogenic Marker Fractalkine and a Placental Vascularization in Preeclampsia. Arch Gynecol Obstet. 2021; 304 (2): 365–76. doi: 10.1007/s00404-021-05966-3
  37. Skalis G., Katsi V., Miliou A. et al. MicroRNAs in Preeclampsia. MicroRNA. 2019; 8 (1): 28–35. doi: 10.2174/2211536607666180813123303
  38. Szczerba E., Zajkowska A., Bochowicz A. et al. Downregulated Expression of MicroRNAs Associated with Cardiac Hypertrophy and Fibrosis in Physiological Pregnancy and the Association with Echocardiographically-Evaluated Myocardial Function. Biomed Rep. 2020; 13 :41. doi: 10.3892/br.2020.1348
  39. Huang X., Wu L., Zhang G. et al. Elevated MicroRNA-181a-5p Contributes to Trophoblast Dysfunction and Preeclampsia. Reprod Sci Thousand Oaks Calif. 2019; 26: 1121–9. doi: 10.1177/1933719118808916
  40. Brkić J., Dunk C., O’Brien J. et al. MicroRNA-218-5p Promotes Endovascular Trophoblast Differentiation and Spiral Artery Remodeling. Mol Ther J Am Soc Gene Ther. 2018; 26: 2189–205. doi: 10.1016/j.ymthe.2018.07.009

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах