Применение остеоиндуктивных материалов в лечении костных патологий и тяжелых переломов
- Авторы: Марков П.А.1, Рожкова Е.А.1, Еремин П.С.1, Марченкова Л.А.1
-
Учреждения:
- Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России
- Выпуск: Том 35, № 11 (2024)
- Страницы: 14-17
- Раздел: Актуальная тема
- URL: https://journals.eco-vector.com/0236-3054/article/view/642459
- DOI: https://doi.org/10.29296/25877305-2024-11-02
- ID: 642459
Цитировать
Полный текст



Аннотация
Лечение костных патологий и тяжелых переломов является актуальной проблемой здравоохранения, требующей эффективных и инновационных подходов для обеспечения полноценного восстановления костной ткани и улучшения качества жизни пациентов. Традиционные методы регенерации костной ткани, такие как трансплантация костных аутографтов и аллографтов, имеют ряд ограничений, включая дефицит донорского материала и риск осложнений. В связи с этим представляет интерес применение остеоиндуктивных материалов, способствующих ускоренному заживлению и восстановлению костных структур.
В статье рассмотрены современные остеоиндуктивные материалы, их виды, механизмы действия и клиническое применение. Особое внимание уделено их роли в лечении сложных переломов и костных патологий, таких как остеопороз и остеомиелит.
Проанализированы данные клинических исследований, демонстрирующие высокую эффективность остеоиндуктивных материалов в лечении сложных переломов, остеомиелита, остеонекроза и других костных патологий. Преимущества использования этих материалов включают ускоренное заживление, снижение риска осложнений, минимизацию необходимости в аутотрансплантатах и улучшение интеграции с костной тканью.
Ключевые слова
Полный текст

Об авторах
П. А. Марков
Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России
Email: ereminps@gmail.com
ORCID iD: 0000-0002-4803-4803
кандидат биологических наук
Россия, Москва
Е. А. Рожкова
Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России
Email: ereminps@gmail.com
ORCID iD: 0000-0002-2440-9244
доктор биологических наук
Россия, МоскваП. С. Еремин
Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России
Email: ereminps@gmail.com
ORCID iD: 0000-0001-8832-8470
доктор медицинских наук
Россия, МоскваЛ. А. Марченкова
Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России
Автор, ответственный за переписку.
Email: ereminps@gmail.com
ORCID iD: 0000-0003-1886-124X
MD
Россия, МоскваСписок литературы
- World Health Organization. Global Health Observatory data repository. 2021. URL: https://www.who.int/data/gho
- Ren J., Li Z., Liu W. et al. Demineralized bone matrix for repair and regeneration of maxillofacial defects: A narrative review. J Dent. 2024; 143: 104899. doi: 10.1016/j.jdent.2024.104899
- Li M., Chen Q., Liu Y. Incorporation of BMP-2 into collagen-based hydrogels for enhanced bone regeneration. Advanced Healthcare Materials. 2021; 10 (15): 2101234. doi: 10.1016/j.msec.2017.03.296
- Kołodziejska B., Kaflak A., Kolmas J. Biologically Inspired Collagen/Apatite Composite Biomaterials for Potential Use in Bone Tissue Regeneration-A Review. Materials (Basel). 2020; 13 (7): 1748. doi: 10.3390/ma13071748
- Ielo I., Calabrese G., De Luca G., et al. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci. 2022; 23 (17): 9721. doi: 10.3390/ijms23179721
- Bhuiyan D.B., Middleton J.C., Tannenbaum R. et al. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. J Biomater Sci Polym Ed. 2016; 27 (11): 1139–54. doi: 10.1080/09205063.2016.1184121
- Einhorn T.A., Gerstenfeld L.C. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015; 11 (1): 45–54. doi: 10.1038/nrrheum.2014.164
- Loi F., Córdova L.A., Pajarinen J. et al. Inflammation, fracture and bone repair. Bone. 2016; 86: 119–30. doi: 10.1016/j.bone.2016.02.020
- Oliveira T.C., Gomes M.S., Gomes A.C. The Crossroads between Infection and Bone Loss. Microorganisms. 2020; 8 (11): 1765. doi: 10.3390/microorganisms8111765
- Марченкова Л.А. Снижение риска переломов при постменопаузальном остеопорозе: обзор эффективной и безопасной фармакологической терапии с высоким уровнем приверженности. Вестник восстановительной медицины. 2023; 22 (4): 129–37 [Marchenkova L.A. Reducing Fracture Risk in Postmenopausal Osteoporosis: a Review of Effective and Safe Pharmacological Therapy Providing Adherence to Treatment. Bulletin of Rehabilitation Medicine. 2023; 22 (4): 129–37 (in Russ.)]. doi: 10.38025/2078-1962-2023-22-4-129-137
- Terkawi M.A., Matsumae G., Shimizu T. et al. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci. 2022; 23 (3): 1786. doi: 10.3390/ijms23031786
- Yifan G., Kailong Q., Yige W. et al. Advances of calcium phosphate nanoceramics for the osteoinductive potential and mechanistic pathways in maxillofacial bone defect repair. Nano TransMed. 2024; 3: 100033. doi: 10.1016/j.ntm.2024.100033
- Chenard K.E., Teven C.M., He T.C. et al. Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. J Biomed Biotechnol. 2012; 2012: 601549. doi: 10.1155/2012/601549
- Tanvir M.A.H., Khaleque M.A., Kim G-H. et al. The Role of Bioceramics for Bone Regeneration: History, Mechanisms, and Future Perspectives. Biomimetics. 2024; 9 (4): 230. doi: 10.3390/biomimetics9040230
- Henkel J., Woodruff M.A., Epari D.R. et al. Bone Regeneration Based on Tissue Engineering Conceptions - A 21st Century Perspective. Bone Res. 2013; 1 (3): 216–48. doi: 10.4248/BR201303002
- Kazimierczak P., Przekora A. Osteoconductive and Osteoinductive Surface Modifications of Biomaterials for Bone Regeneration: A Concise Review. Coatings. 2020; 10 (10): 971. doi: 10.3390/coatings10100971
- Ozdemir M.T., Kir M.Ç. Repair of long bone defects with demineralized bone matrix and autogenous bone composite. Indian J Orthop. 2011; 45 (3): 226–30. doi: 10.4103/0019-5413.80040
- Vdoviaková K., Jenca A., Jenca A. Jr. et al. Regenerative Potential of Hydroxyapatite-Based Ceramic Biomaterial on Mandibular Cortical Bone: An In Vivo Study. Biomedicines. 2023; 11 (3): 877. doi: 10.3390/biomedicines11030877
- Binlateh T., Thammanichanon P., Rittipakorn P. et al. Collagen-Based Biomaterials in Periodontal Regeneration: Current Applications and Future Perspectives of Plant-Based Collagen. Biomimetics (Basel). 2022; 7 (2): 34. doi: 10.3390/biomimetics7020034
- Georgeanu V.A., Gingu O., Antoniac I.V. et al. Current Options and Future Perspectives on Bone Graft and Biomaterials Substitutes for Bone Repair, from Clinical Needs to Advanced Biomaterials Research. Appl Sci. 2023; 13 (14): 8471. doi: 10.3390/app13148471
- Sui P., Yu T., Sun S. et al. Advances in materials used for minimally invasive treatment of vertebral compression fractures. Front Bioeng Biotechnol. 2023; 11: 1303678. doi: 10.3389/fbioe.2023.1303678
- Che Z., Song Y., Zhu L. et al. Emerging roles of growth factors in osteonecrosis of the femoral head. Front Genet. 2022; 13: 1037190. doi: 10.3389/fgene.2022.1037190
- Hoshi M., Taira M., Sawada T. et al. Preparation of Collagen/Hydroxyapatite Composites Using the Alternate Immersion Method and Evaluation of the Cranial Bone-Forming Capability of Composites Complexed with Acidic Gelatin and b-FGF. Materials. 2022; 15 (24): 8802. doi: 10.3390/ma15248802
- Lee S.S., Huang B.J., Kaltz S.R. et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials. 2013; 34 (2): 452–9. doi: 10.1016/j.biomaterials.2012.10.005
- Mirkhalaf M., Men Y., Wang R. et al. Personalized 3D printed bone scaffolds: A review. Acta Biomater. 2023; 156: 110–24. doi: 10.1016/j.actbio.2022.04.014
- Xu D., Xu Z., Cheng L. et al. Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide. Heliyon. 2022; 8 (6): e09748. doi: 10.1016/j.heliyon.2022.e09748
- Xing Y., Qiu L., Liu D. et al. The role of smart polymeric biomaterials in bone regeneration: a review. Front Bioeng Biotechnol. 2023; 11: 1240861. doi: 10.3389/fbioe.2023.1240861
- Погонченкова И.В., Орлова Е.В., Сомов Д.А. и др. Эффективность телемедицинских технологий в комплексной программе реабилитации пациентов после транспедикулярной фиксации позвоночника. Вестник восстановительной медицины. 2023; 22 (1): 98–109 [Pogonchenkova I.V., Orlova E.V., Somov D.A. et al. Telemedicine Technologies Efficacy in a Complex Rehabilitation Program: аn Open Controlled Study of 64 Patients after Transpedicular Spine Fixation. Bulletin of Rehabilitation Medicine. 2023; 22 (1): 98–109 (in Russ.)]. doi: 10.38025/2078-1962-2023-22-1-98-109
- Jeon H.J., Jung A., Kim H.J. et al. Enhanced Osteoblast Adhesion and Proliferation on Vacuum Plasma-Treated Implant Surface. Appl Sci. 2022; 12 (19): 9884. doi: 10.3390/app12199884
- Gao Y., Zhang X., Zhou H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics. 2023; 15 (10): 2405. doi: 10.3390/pharmaceutics15102405
- Васильева В.А., Марченкова Л.А., Ответчикова Д.И. и др. Медицинская реабилитация после травм нижних конечностей у пациентов с сахарным диабетом: обзор литературы. Вестник восстановительной медицины. 2024; 22 (3): 61–8 [Vasileva V.A., Marchenkova L.A., Otvetchikova D.I. et al. Medical Rehabilitation after Lower Limb Injuries in Patients with Diabetes Mellitus: a Review. Bulletin of Rehabilitation Medicine. 2024; 22 (3): 61–8 (in Russ.)]. doi: 10.38025/2078-1962-2024-23-3-61-68
Дополнительные файлы
