Применение остеоиндуктивных материалов в лечении костных патологий и тяжелых переломов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Лечение костных патологий и тяжелых переломов является актуальной проблемой здравоохранения, требующей эффективных и инновационных подходов для обеспечения полноценного восстановления костной ткани и улучшения качества жизни пациентов. Традиционные методы регенерации костной ткани, такие как трансплантация костных аутографтов и аллографтов, имеют ряд ограничений, включая дефицит донорского материала и риск осложнений. В связи с этим представляет интерес применение остеоиндуктивных материалов, способствующих ускоренному заживлению и восстановлению костных структур.

В статье рассмотрены современные остеоиндуктивные материалы, их виды, механизмы действия и клиническое применение. Особое внимание уделено их роли в лечении сложных переломов и костных патологий, таких как остеопороз и остеомиелит.

Проанализированы данные клинических исследований, демонстрирующие высокую эффективность остеоиндуктивных материалов в лечении сложных переломов, остеомиелита, остеонекроза и других костных патологий. Преимущества использования этих материалов включают ускоренное заживление, снижение риска осложнений, минимизацию необходимости в аутотрансплантатах и улучшение интеграции с костной тканью.

Полный текст

Доступ закрыт

Об авторах

П. А. Марков

Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России

Email: ereminps@gmail.com
ORCID iD: 0000-0002-4803-4803

кандидат биологических наук

 

Россия, Москва

Е. А. Рожкова

Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России

Email: ereminps@gmail.com
ORCID iD: 0000-0002-2440-9244

доктор биологических наук

Россия, Москва

П. С. Еремин

Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России

Email: ereminps@gmail.com
ORCID iD: 0000-0001-8832-8470

доктор медицинских наук

Россия, Москва

Л. А. Марченкова

Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России

Автор, ответственный за переписку.
Email: ereminps@gmail.com
ORCID iD: 0000-0003-1886-124X

MD

Россия, Москва

Список литературы

  1. World Health Organization. Global Health Observatory data repository. 2021. URL: https://www.who.int/data/gho
  2. Ren J., Li Z., Liu W. et al. Demineralized bone matrix for repair and regeneration of maxillofacial defects: A narrative review. J Dent. 2024; 143: 104899. doi: 10.1016/j.jdent.2024.104899
  3. Li M., Chen Q., Liu Y. Incorporation of BMP-2 into collagen-based hydrogels for enhanced bone regeneration. Advanced Healthcare Materials. 2021; 10 (15): 2101234. doi: 10.1016/j.msec.2017.03.296
  4. Kołodziejska B., Kaflak A., Kolmas J. Biologically Inspired Collagen/Apatite Composite Biomaterials for Potential Use in Bone Tissue Regeneration-A Review. Materials (Basel). 2020; 13 (7): 1748. doi: 10.3390/ma13071748
  5. Ielo I., Calabrese G., De Luca G., et al. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci. 2022; 23 (17): 9721. doi: 10.3390/ijms23179721
  6. Bhuiyan D.B., Middleton J.C., Tannenbaum R. et al. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. J Biomater Sci Polym Ed. 2016; 27 (11): 1139–54. doi: 10.1080/09205063.2016.1184121
  7. Einhorn T.A., Gerstenfeld L.C. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015; 11 (1): 45–54. doi: 10.1038/nrrheum.2014.164
  8. Loi F., Córdova L.A., Pajarinen J. et al. Inflammation, fracture and bone repair. Bone. 2016; 86: 119–30. doi: 10.1016/j.bone.2016.02.020
  9. Oliveira T.C., Gomes M.S., Gomes A.C. The Crossroads between Infection and Bone Loss. Microorganisms. 2020; 8 (11): 1765. doi: 10.3390/microorganisms8111765
  10. Марченкова Л.А. Снижение риска переломов при постменопаузальном остеопорозе: обзор эффективной и безопасной фармакологической терапии с высоким уровнем приверженности. Вестник восстановительной медицины. 2023; 22 (4): 129–37 [Marchenkova L.A. Reducing Fracture Risk in Postmenopausal Osteoporosis: a Review of Effective and Safe Pharmacological Therapy Providing Adherence to Treatment. Bulletin of Rehabilitation Medicine. 2023; 22 (4): 129–37 (in Russ.)]. doi: 10.38025/2078-1962-2023-22-4-129-137
  11. Terkawi M.A., Matsumae G., Shimizu T. et al. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci. 2022; 23 (3): 1786. doi: 10.3390/ijms23031786
  12. Yifan G., Kailong Q., Yige W. et al. Advances of calcium phosphate nanoceramics for the osteoinductive potential and mechanistic pathways in maxillofacial bone defect repair. Nano TransMed. 2024; 3: 100033. doi: 10.1016/j.ntm.2024.100033
  13. Chenard K.E., Teven C.M., He T.C. et al. Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. J Biomed Biotechnol. 2012; 2012: 601549. doi: 10.1155/2012/601549
  14. Tanvir M.A.H., Khaleque M.A., Kim G-H. et al. The Role of Bioceramics for Bone Regeneration: History, Mechanisms, and Future Perspectives. Biomimetics. 2024; 9 (4): 230. doi: 10.3390/biomimetics9040230
  15. Henkel J., Woodruff M.A., Epari D.R. et al. Bone Regeneration Based on Tissue Engineering Conceptions - A 21st Century Perspective. Bone Res. 2013; 1 (3): 216–48. doi: 10.4248/BR201303002
  16. Kazimierczak P., Przekora A. Osteoconductive and Osteoinductive Surface Modifications of Biomaterials for Bone Regeneration: A Concise Review. Coatings. 2020; 10 (10): 971. doi: 10.3390/coatings10100971
  17. Ozdemir M.T., Kir M.Ç. Repair of long bone defects with demineralized bone matrix and autogenous bone composite. Indian J Orthop. 2011; 45 (3): 226–30. doi: 10.4103/0019-5413.80040
  18. Vdoviaková K., Jenca A., Jenca A. Jr. et al. Regenerative Potential of Hydroxyapatite-Based Ceramic Biomaterial on Mandibular Cortical Bone: An In Vivo Study. Biomedicines. 2023; 11 (3): 877. doi: 10.3390/biomedicines11030877
  19. Binlateh T., Thammanichanon P., Rittipakorn P. et al. Collagen-Based Biomaterials in Periodontal Regeneration: Current Applications and Future Perspectives of Plant-Based Collagen. Biomimetics (Basel). 2022; 7 (2): 34. doi: 10.3390/biomimetics7020034
  20. Georgeanu V.A., Gingu O., Antoniac I.V. et al. Current Options and Future Perspectives on Bone Graft and Biomaterials Substitutes for Bone Repair, from Clinical Needs to Advanced Biomaterials Research. Appl Sci. 2023; 13 (14): 8471. doi: 10.3390/app13148471
  21. Sui P., Yu T., Sun S. et al. Advances in materials used for minimally invasive treatment of vertebral compression fractures. Front Bioeng Biotechnol. 2023; 11: 1303678. doi: 10.3389/fbioe.2023.1303678
  22. Che Z., Song Y., Zhu L. et al. Emerging roles of growth factors in osteonecrosis of the femoral head. Front Genet. 2022; 13: 1037190. doi: 10.3389/fgene.2022.1037190
  23. Hoshi M., Taira M., Sawada T. et al. Preparation of Collagen/Hydroxyapatite Composites Using the Alternate Immersion Method and Evaluation of the Cranial Bone-Forming Capability of Composites Complexed with Acidic Gelatin and b-FGF. Materials. 2022; 15 (24): 8802. doi: 10.3390/ma15248802
  24. Lee S.S., Huang B.J., Kaltz S.R. et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials. 2013; 34 (2): 452–9. doi: 10.1016/j.biomaterials.2012.10.005
  25. Mirkhalaf M., Men Y., Wang R. et al. Personalized 3D printed bone scaffolds: A review. Acta Biomater. 2023; 156: 110–24. doi: 10.1016/j.actbio.2022.04.014
  26. Xu D., Xu Z., Cheng L. et al. Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide. Heliyon. 2022; 8 (6): e09748. doi: 10.1016/j.heliyon.2022.e09748
  27. Xing Y., Qiu L., Liu D. et al. The role of smart polymeric biomaterials in bone regeneration: a review. Front Bioeng Biotechnol. 2023; 11: 1240861. doi: 10.3389/fbioe.2023.1240861
  28. Погонченкова И.В., Орлова Е.В., Сомов Д.А. и др. Эффективность телемедицинских технологий в комплексной программе реабилитации пациентов после транспедикулярной фиксации позвоночника. Вестник восстановительной медицины. 2023; 22 (1): 98–109 [Pogonchenkova I.V., Orlova E.V., Somov D.A. et al. Telemedicine Technologies Efficacy in a Complex Rehabilitation Program: аn Open Controlled Study of 64 Patients after Transpedicular Spine Fixation. Bulletin of Rehabilitation Medicine. 2023; 22 (1): 98–109 (in Russ.)]. doi: 10.38025/2078-1962-2023-22-1-98-109
  29. Jeon H.J., Jung A., Kim H.J. et al. Enhanced Osteoblast Adhesion and Proliferation on Vacuum Plasma-Treated Implant Surface. Appl Sci. 2022; 12 (19): 9884. doi: 10.3390/app12199884
  30. Gao Y., Zhang X., Zhou H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics. 2023; 15 (10): 2405. doi: 10.3390/pharmaceutics15102405
  31. Васильева В.А., Марченкова Л.А., Ответчикова Д.И. и др. Медицинская реабилитация после травм нижних конечностей у пациентов с сахарным диабетом: обзор литературы. Вестник восстановительной медицины. 2024; 22 (3): 61–8 [Vasileva V.A., Marchenkova L.A., Otvetchikova D.I. et al. Medical Rehabilitation after Lower Limb Injuries in Patients with Diabetes Mellitus: a Review. Bulletin of Rehabilitation Medicine. 2024; 22 (3): 61–8 (in Russ.)]. doi: 10.38025/2078-1962-2024-23-3-61-68

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ИД "Русский врач", 2024