The use of osteoinductive materials in the treatment of bone pathologies and severe fractures
- 作者: Markov P.A.1, Rozhkova E.A.1, Eremin P.S.1, Marchenkova L.A.1
-
隶属关系:
- National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia
- 期: 卷 35, 编号 11 (2024)
- 页面: 14-17
- 栏目: Topical Subject
- URL: https://journals.eco-vector.com/0236-3054/article/view/642459
- DOI: https://doi.org/10.29296/25877305-2024-11-02
- ID: 642459
如何引用文章
详细
Treatment of bone pathologies and severe fractures is an urgent healthcare problem that requires effective and innovative approaches to ensure complete restoration of bone tissue and improve the quality of life of patients. Traditional methods of bone tissue regeneration, such as transplantation of bone autografts and allografts, have a number of limitations, including a shortage of donor material and the risk of complications. In this regard, it is of interest to use osteoinductive materials that promote accelerated healing and restoration of bone structures.
The article discusses modern osteoinductive materials, their types, mechanisms of action and clinical application. Particular attention is paid to their role in the treatment of complex fractures and bone pathologies, such as osteoporosis and osteomyelitis.
Data from clinical studies have been analyzed demonstrating the high effectiveness of osteoinductive materials in the treatment of complex fractures, osteomyelitis, osteonecrosis and other bone pathologies. Benefits of using these materials include accelerated healing, reduced risk of complications, minimized need for autografts, and improved integration with bone tissue.
全文:

作者简介
P. Markov
National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia
Email: ereminps@gmail.com
ORCID iD: 0000-0002-4803-4803
Cand. Sci. (Biol.)
俄罗斯联邦, Moscow
E. Rozhkova
National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia
Email: ereminps@gmail.com
ORCID iD: 0000-0002-2440-9244
Dr. Sci. (Biol.)
俄罗斯联邦, MoscowP. Eremin
National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia
Email: ereminps@gmail.com
ORCID iD: 0000-0001-8832-8470
Dr. Sci. (Med.)
俄罗斯联邦, MoscowL. Marchenkova
National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia
编辑信件的主要联系方式.
Email: ereminps@gmail.com
ORCID iD: 0000-0003-1886-124X
MD
俄罗斯联邦, Moscow参考
- World Health Organization. Global Health Observatory data repository. 2021. URL: https://www.who.int/data/gho
- Ren J., Li Z., Liu W. et al. Demineralized bone matrix for repair and regeneration of maxillofacial defects: A narrative review. J Dent. 2024; 143: 104899. doi: 10.1016/j.jdent.2024.104899
- Li M., Chen Q., Liu Y. Incorporation of BMP-2 into collagen-based hydrogels for enhanced bone regeneration. Advanced Healthcare Materials. 2021; 10 (15): 2101234. doi: 10.1016/j.msec.2017.03.296
- Kołodziejska B., Kaflak A., Kolmas J. Biologically Inspired Collagen/Apatite Composite Biomaterials for Potential Use in Bone Tissue Regeneration-A Review. Materials (Basel). 2020; 13 (7): 1748. doi: 10.3390/ma13071748
- Ielo I., Calabrese G., De Luca G., et al. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci. 2022; 23 (17): 9721. doi: 10.3390/ijms23179721
- Bhuiyan D.B., Middleton J.C., Tannenbaum R. et al. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. J Biomater Sci Polym Ed. 2016; 27 (11): 1139–54. doi: 10.1080/09205063.2016.1184121
- Einhorn T.A., Gerstenfeld L.C. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015; 11 (1): 45–54. doi: 10.1038/nrrheum.2014.164
- Loi F., Córdova L.A., Pajarinen J. et al. Inflammation, fracture and bone repair. Bone. 2016; 86: 119–30. doi: 10.1016/j.bone.2016.02.020
- Oliveira T.C., Gomes M.S., Gomes A.C. The Crossroads between Infection and Bone Loss. Microorganisms. 2020; 8 (11): 1765. doi: 10.3390/microorganisms8111765
- Марченкова Л.А. Снижение риска переломов при постменопаузальном остеопорозе: обзор эффективной и безопасной фармакологической терапии с высоким уровнем приверженности. Вестник восстановительной медицины. 2023; 22 (4): 129–37 [Marchenkova L.A. Reducing Fracture Risk in Postmenopausal Osteoporosis: a Review of Effective and Safe Pharmacological Therapy Providing Adherence to Treatment. Bulletin of Rehabilitation Medicine. 2023; 22 (4): 129–37 (in Russ.)]. doi: 10.38025/2078-1962-2023-22-4-129-137
- Terkawi M.A., Matsumae G., Shimizu T. et al. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci. 2022; 23 (3): 1786. doi: 10.3390/ijms23031786
- Yifan G., Kailong Q., Yige W. et al. Advances of calcium phosphate nanoceramics for the osteoinductive potential and mechanistic pathways in maxillofacial bone defect repair. Nano TransMed. 2024; 3: 100033. doi: 10.1016/j.ntm.2024.100033
- Chenard K.E., Teven C.M., He T.C. et al. Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. J Biomed Biotechnol. 2012; 2012: 601549. doi: 10.1155/2012/601549
- Tanvir M.A.H., Khaleque M.A., Kim G-H. et al. The Role of Bioceramics for Bone Regeneration: History, Mechanisms, and Future Perspectives. Biomimetics. 2024; 9 (4): 230. doi: 10.3390/biomimetics9040230
- Henkel J., Woodruff M.A., Epari D.R. et al. Bone Regeneration Based on Tissue Engineering Conceptions - A 21st Century Perspective. Bone Res. 2013; 1 (3): 216–48. doi: 10.4248/BR201303002
- Kazimierczak P., Przekora A. Osteoconductive and Osteoinductive Surface Modifications of Biomaterials for Bone Regeneration: A Concise Review. Coatings. 2020; 10 (10): 971. doi: 10.3390/coatings10100971
- Ozdemir M.T., Kir M.Ç. Repair of long bone defects with demineralized bone matrix and autogenous bone composite. Indian J Orthop. 2011; 45 (3): 226–30. doi: 10.4103/0019-5413.80040
- Vdoviaková K., Jenca A., Jenca A. Jr. et al. Regenerative Potential of Hydroxyapatite-Based Ceramic Biomaterial on Mandibular Cortical Bone: An In Vivo Study. Biomedicines. 2023; 11 (3): 877. doi: 10.3390/biomedicines11030877
- Binlateh T., Thammanichanon P., Rittipakorn P. et al. Collagen-Based Biomaterials in Periodontal Regeneration: Current Applications and Future Perspectives of Plant-Based Collagen. Biomimetics (Basel). 2022; 7 (2): 34. doi: 10.3390/biomimetics7020034
- Georgeanu V.A., Gingu O., Antoniac I.V. et al. Current Options and Future Perspectives on Bone Graft and Biomaterials Substitutes for Bone Repair, from Clinical Needs to Advanced Biomaterials Research. Appl Sci. 2023; 13 (14): 8471. doi: 10.3390/app13148471
- Sui P., Yu T., Sun S. et al. Advances in materials used for minimally invasive treatment of vertebral compression fractures. Front Bioeng Biotechnol. 2023; 11: 1303678. doi: 10.3389/fbioe.2023.1303678
- Che Z., Song Y., Zhu L. et al. Emerging roles of growth factors in osteonecrosis of the femoral head. Front Genet. 2022; 13: 1037190. doi: 10.3389/fgene.2022.1037190
- Hoshi M., Taira M., Sawada T. et al. Preparation of Collagen/Hydroxyapatite Composites Using the Alternate Immersion Method and Evaluation of the Cranial Bone-Forming Capability of Composites Complexed with Acidic Gelatin and b-FGF. Materials. 2022; 15 (24): 8802. doi: 10.3390/ma15248802
- Lee S.S., Huang B.J., Kaltz S.R. et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials. 2013; 34 (2): 452–9. doi: 10.1016/j.biomaterials.2012.10.005
- Mirkhalaf M., Men Y., Wang R. et al. Personalized 3D printed bone scaffolds: A review. Acta Biomater. 2023; 156: 110–24. doi: 10.1016/j.actbio.2022.04.014
- Xu D., Xu Z., Cheng L. et al. Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide. Heliyon. 2022; 8 (6): e09748. doi: 10.1016/j.heliyon.2022.e09748
- Xing Y., Qiu L., Liu D. et al. The role of smart polymeric biomaterials in bone regeneration: a review. Front Bioeng Biotechnol. 2023; 11: 1240861. doi: 10.3389/fbioe.2023.1240861
- Погонченкова И.В., Орлова Е.В., Сомов Д.А. и др. Эффективность телемедицинских технологий в комплексной программе реабилитации пациентов после транспедикулярной фиксации позвоночника. Вестник восстановительной медицины. 2023; 22 (1): 98–109 [Pogonchenkova I.V., Orlova E.V., Somov D.A. et al. Telemedicine Technologies Efficacy in a Complex Rehabilitation Program: аn Open Controlled Study of 64 Patients after Transpedicular Spine Fixation. Bulletin of Rehabilitation Medicine. 2023; 22 (1): 98–109 (in Russ.)]. doi: 10.38025/2078-1962-2023-22-1-98-109
- Jeon H.J., Jung A., Kim H.J. et al. Enhanced Osteoblast Adhesion and Proliferation on Vacuum Plasma-Treated Implant Surface. Appl Sci. 2022; 12 (19): 9884. doi: 10.3390/app12199884
- Gao Y., Zhang X., Zhou H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics. 2023; 15 (10): 2405. doi: 10.3390/pharmaceutics15102405
- Васильева В.А., Марченкова Л.А., Ответчикова Д.И. и др. Медицинская реабилитация после травм нижних конечностей у пациентов с сахарным диабетом: обзор литературы. Вестник восстановительной медицины. 2024; 22 (3): 61–8 [Vasileva V.A., Marchenkova L.A., Otvetchikova D.I. et al. Medical Rehabilitation after Lower Limb Injuries in Patients with Diabetes Mellitus: a Review. Bulletin of Rehabilitation Medicine. 2024; 22 (3): 61–8 (in Russ.)]. doi: 10.38025/2078-1962-2024-23-3-61-68
补充文件
