Construction of a predictive model for assessing the risk of noncardioembolic ischemic stroke


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Objective. To develop a predictive model to assess the risk of a first noncardioembolic ischemic stroke (IS). Subjects and methods. A case-control study enrolled 412 participants aged 45 to 80 years, including 206 patients who had experienced a first noncardioembolic IS and 206 healthy volunteers who had not and were matched for gender and age to those in the study group. In all the participants of the investigation, their blood was taken from the cubital vein in the morning on an empty stomach after 12-hour fasting, and was estimated using the concentrations of markers, such as glucose, insulin, total cholesterol, low- and high-density lipoprotein cholesterol, triglycerides, apolipoproteins B and A1, homocysteine, C-reactive protein, interleukins 1, 4, 6, 8, and 10, vascular endothelial growth factor A, tumor necrosis factor-а, adiponectin, uric acid, N-terminal propeptide of natriuretic hormone, creatinine, and cystatin C. All the participants underwent genotyping of 25 single nucleotide polymorphisms (SNPs): APOE (rs7412, rs429358, rs5174), APOA5 (rs34282181, rs619054), APOC4 (rs1132899), APON (rs4581), LPL (rs199675233), LPL (rs199675233), LP(a) (rs41267817), APOB (rs1042031, rs676210), APOD (rs7659), ANGPT4 (rs1044250), TNF-α (rs1800620), VEGFA (rs62401172), IL8 (rs1803205), IL6 (rs56383910), MTHFR (rs1801131, rs1801133), ADIPOQ-AS1 (rs17366743, rs185847354), ADIPOR2 (rs12342), GRM1 (rs1047005), GRM3 (rs2228595), and BDNF (rs6265). Analysis of allele recognition by a polymerase chain reaction assay using the ready-made TaqMan probes with Assey ID identification number (Applied Biosystems, USA). Results. The resulting model included the following independent variables: type 2 diabetes mellitus (DM2), adiponectin, ApoA1, IL6, ADIPOQ (rs17366743). The area under the curve (AUC) (95% confidence interval) was 0.947 (0.918; 0.976), the cut-off threshold was 0.565, while the sensitivity of the model was 87.1%, the specificity was 90.3%; the percentage of correct reclassification was 88.7%. Conclusion. The resulting predictive model includes clinical, biochemical, and molecular genetic parameters and is characterized by the high sensitivity, specificity, and accuracy of reclassification.

全文:

受限制的访问

作者简介

V. Shishkova

National Medical Research Center for Therapy and Preventive Therapy Ministry of Health of Russia; A.I. Evdokimov Moscow State University of Medicine and Dentistry Ministry of Health of Russia

Email: veronika-1306@mail.ru
Candidate of Medical Sciences Moscow

T. Adasheva

A.I. Evdokimov Moscow State University of Medicine and Dentistry Ministry of Health of Russia

Email: veronika-1306@mail.ru
Professor, MD Moscow

L. Stakhovskaya

N.I. Pirogov Russian National Research Medical University

Email: veronika-1306@mail.ru
Professor, MD Moscow

参考

  1. Стаховская Л.В., Котов С.В., Исакова Е.В. Инсульт: руководство для врачей. М: ООО «Медицинское информационное агентство», 2013; 400 с.
  2. Стаховская Л.В., Клочихина О.А., Богатырева М.Д. и др. Эпидемиология инсульта в России по результатам территориально-популяционного регистра (2009-2010). Журнал неврологии и психиатрии им. С.С. Корсакова. 2013; 113 (5): 4-10.
  3. DeFronzo R.A., Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991; 14 (3): 173-94. doi: 10.2337/diacare.14.3.173
  4. Шишкова В.Н. Механизмы развития сердечно-сосудистых заболеваний и сахарного диабета типа 2: роль инсулинорезистентности, гиперинсулинемии и гипоадипонектинемии. Вопросы коррекции. Системные гипертензии. 2014; 2: 48-53.
  5. Hobbs F.D., Davis R.C., Roalfe A.K. et al. Reliability of N-terminal pro-brain natriuretic peptide assay in diagnosis of heart failure: cohort study in representative and high risk community populations. BMJ. 2002; 232 (7352): 1498-500. doi: 10.1136/bmj.324.7352.1498
  6. Wang Y., Li W., Yang J. et al. Association between cystatin C and the risk of ischemic stroke: a systematic review and meta-analysis. J Mol Neurosci. 2019; 69 (3): 444-9. doi: 10.1007/s12031-019-01373-1
  7. Jeon S.B., Kang D.W., Kim J.S. et al. Homocysteine, small-vessel disease, and atherosclerosis: an MRI study of 825 stroke patients. Neurology. 2014; 83 (8): 695-701. doi: 10.1212/WNL.0000000000000720
  8. Zhao X., Wang H., Sun G. et al. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci. 2015; 35 (32): 11281-91. doi: 10.1523/JNEUROSCI.1685-15.2015
  9. Bang O.Y., Savel J.L., Ovbiagele V. et al. Adiponectin levels in patients with intracranial atherosclerosis. Neurology. 2007; 68 (22): 1931-7. doi: 10.1212/01. wnl.0000263186.20988.9f
  10. Dong H., Chen W., Wang X. et al. Apolipoprotein A1, B levels, and their ratio and the risk of a first stroke: a meta-analysis and case-control study. Metab Brain Dis. 2015; 30 (6): 1319-30. doi: 10.1007/s11011-015-9732-7
  11. Doll N.D., Barr T.L., Simpkin J.W. Cytokines: Their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis. 2014; 5 (5): 294306. doi: 10.14336/AD.2014.0500294.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2020