PLACENTAL PROTEOMIC PROFILE DURING PHYSIOLOGICAL AND PREECLAMPSIA-COMPLICATED PREGNANCY


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To reveal changes in the preeclamptic placental proteomic spectrum. Subject and methods. Thirty-two women, among whom there were 17 women with preeclampsia who formed a study group and 15 women with physiological pregnancy who were included in a control group, were examined. Placental proteomic analysis was made using two-dimensional electrophoresis and time-of-flight mass spectrometry. Results. The performed studies could reveal and identify difference proteins, the rate of whose production was considerably different in physiological pregnancy and preeclampsia. Among the proteins with decreased expression, there was α-tropomyosin, actin-related protein 2/3 complex subunit 2, cytoplasmic actin 1, annexin A4, 20S proteasome, and 60S acidic ribosomal protein. The proteins with increased expression included the molecular chaperones heat shock protein (Hsp60) and endoplasmin, as well as peroxidoxin-4, mitochondrial aconitate hydratase, and 14-3-3 protein epsilon. Conclusion. The established differences in the placental proteomic spectrum obviously reflect impaired molecular cell interactions in the maternal-placental-fetal system in preeclampsia-complicated pregnancy.

Full Text

Restricted Access

About the authors

T. N POGORELOVA

Rostov Research Institute of Obstetrics and Pediatrics, Ministry of Health of Russia

Email: rniiap@yandex.ru
Rostov-on-Don

V. O GUNKO

Rostov Research Institute of Obstetrics and Pediatrics, Ministry of Health of Russia

Email: rniiap@yandex.ru
Rostov-on-Don

V. A LINDE

Rostov Research Institute of Obstetrics and Pediatrics, Ministry of Health of Russia

Email: rniiap@yandex.ru
Rostov-on-Don

References

  1. Upadhyay R.D., Balasinor N.H., Kumar A.V., Sachdeva G., Parte P., Dumasia K. Proteomics in reproductive biology: beacon for unraveling the molecular complexities. Biochim. Biophys. Acta. 2013; 1834(1): 8—15.
  2. Barbosa E.B., Vidotto A., Polachini G.M., Henrique T., Marqui A.B., Tajara E.H. Proteomics: methodologies and applications to the study of human diseases. Rev. Assoc. Med. Bras. 2012; 58(3): 366—75.
  3. Kolialexi A., Mavrou A., Spyrou G., Tsangaris G.T. Mass spectrometry-based proteomics in reproductive medicine. Mass Spectrom. Rev. 2008; 27(6): 624—34.
  4. Сидорова И.С., Габибов А.Г., Никитина Н.А., Бардачова А.В. Новые данные о генезе гестоза и оценке его тяжести. Акушерство и гинекология. 2006; 6: 10—5.
  5. Айламазян Э.К., Мозговая Е.В. Гестоз: теория и практика. М.: МЕДпресс-информ; 2008. 272с.
  6. Торчинов А.М., Цахилова С.Г., Сарахова Д.Х., Джонбобоева Г.Н. Актуальность преэклампсии (гестоза) в современном акушерстве. Проблемы и решения (обзор литературы). Проблемы репродукции. 2010; 3: 87—91.
  7. Mine K., Katayama A., Matsumura T., Nishino T., Kuwabara Y., Ishikawa G. et al. Proteome analysis of human placentae: preeclampsia versus normal pregnancy. Placenta. 2007; 28(7): 676—87.
  8. Gharesi-Fard B., Zolghadri J., Kamali-Sarvestani E. Proteome differences of placenta between pre-eclampsia and normal pregnancy. Placenta. 2010; 31(2): 121—5.
  9. Görg A., Obermaier C., Boguth G., Harder A., Scheibe B., Wildgruber R. et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000; 21(6): 1037—53.
  10. Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal. Chem. 1996; 68: 850—8.
  11. Пинаев Г.П. Сократительные системы клетки: от мышечного сокрашения к регуляции клеточных функций. Цитология. 2009; 51(3): 172—81.
  12. Lin J.J., Eppinga R.D., Warren K.S., McCrae K.R. Human tropomyosin isoforms in the regulation of cytoskeleton functions. Adv. Exp. Med. Biol. 2008; 644: 201—22.
  13. Rotty J.D., Wu C., Bear J.E. New insights into the regulation and cellular functions of the ARP2/3 complex. Nat. Rev. Mol. Cell Biol. 2013; 14(1): 7—12.
  14. Yoo Y., Wu X., Guan J.L. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J. Biol. Chem. 2007; 282(10): 7616—23.
  15. Hass R., Sohn C. Increased oxidative stress in pre-eclamptic placenta is associated with altered proteasome activity and protein patterns. Placenta. 2003; 24(10): 979—84.
  16. Bandorowicz-Pikuła J., Wos M., Pikuta S. Participation of annexins in signal transduction, regulation of plasma membrane structure and membrane repair mechanisms. Postepy Biochem. 2012; 58(2): 135—48.
  17. Tchorzewski M. The acidic ribosomal P proteins. Int. J. Biochem. Cell Biol. 2002; 34(8): 911—5.
  18. Калинина Е.В., Чернов Н.Н., Саприн А.Н. Участие тио-, перокси- и глутаредоксинов в клеточных редокс-зависимых процессах. Успехи биологической химии. 2008; 48: 319—58.
  19. Матасова Л.В., Попова Т.Н. Аконитаза млекопитающих при окислительном стрессе. Биохимия. 2008; 73(9): 1189—98.
  20. Tavender T.J., Sheppard A.M., Bulleid N.J. Peroxiredoxin IV is an endoplasmic reticulum-localized enzyme forming oligomeric complexes in human cells. Biochem. J. 2008; 411(1): 191—9.
  21. Гунько В.О., Погорелова Т.Н. Активность транскрипционного фактора NF-kB в плаценте при физиологической и осложненной гестации. Клинико-лабораторный консилиум. 2011; 39: 59—60.
  22. Babakov V.N., Petukhova O.A., Turoverova L.V., Kropacheva I.V., Tentler D.G., Bolshakova A.V. et al. RelA/ NF-kappaB transcription factor associates with alpha-actinin-4. Exp. Cell Res. 2008; 314(5): 1030—8.
  23. Zuo S., Xue Y., Tang S., Yao J., Du R., Yang P. et al. 14-3-3 epsilon dynamically interacts with key components of mitogen-activated protein kinase signal module for selective modulation of the TNF-alpha-induced time course-dependent NF-kappaB activity. J. Proteome Res. 2010; 9(7): 3465—78.
  24. Cappello F., Conway de Macario E., Marasà L., Zummo G., Macario A.J. Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol. Ther. 2008; 7(6): 801—9.
  25. Yang Y., Li Z. Roles of heat shock protein gp96 in the ER quality control: redundant or unique function? Mol. Cells. 2005; 20(2): 173—82.
  26. Погорелова Т.Н., Линде В.А., Крукиер И.И., Гунько В.О., Друккер Н.А. Молекулярные механизмы регуляции метаболических процессов в плаценте при физиологически протекающей и осложненной беременности. СПб.: Гиппократ; 2012. 304с.
  27. Орлов В.И., Погорелова Т.Н., Гунько В.О., Крукиер И.И. Протеомный спектр амниотической жидкости при физиологической и осложненной беременности. Российский вестник акушера-гинеколога. 2010; 6: 4—8.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies