CONGENITAL MALFORMATIONS AS A RESULT OF VITAMIN DEFICIENCIES: SYSTEMATIC ANALYSIS AND PRACTICAL CONCLUSIONS


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The provision of the maternal organism with all essential vitamins, vitamin-like substances, and trace elements is an undeniable factor contributing to physiological pregnancy and normal fetal development. It is commonly stated that micronutrient support of pregnancy is quite sufficient if it includes only iodine and folates. The results of a systematic analysis, which are given in this paper, show that deficiency of vitamins A, E, D, C, and virtually any of B Group vitamins (including folates, pyridoxine, and cyanocobalamin) during pregnancy substantially increase the risk of pregnancy pathology and fetal malformations. The available fundamental and clinical findings demonstrate that the use of just multivitamin preparations during pregnancy will have the highest effect for the effective micronutrient support of pregnant women and the prevention of pregnancy pathology and fetal malformations.

Keywords

Full Text

Restricted Access

About the authors

O. A GROMOVA

Ivanovo State Medical Academy

Email: unesco.gromova@gmail.com

References

  1. Geissler C., Powers H., eds. Human nutrition. Elsevier Churchill Livingstone, Netherlands; 2005. 765 p.
  2. Torshin I.Y., Gromova O.A. Magnesium and pyridoxine: fundamental studies and clinical practice. Nova Science Publ.; 2011. 196 p.
  3. Коденцова В.М., Вржесинская О.А. Витамины в питании беременных. Гинекология. 2002; 4(1): 7—12.
  4. Маталыгина О.А. Питание беременных и кормящих женщин. Решенные и нерешенные проблемы. Вопросы современной педиатрии. 2008; 7(5): 23—9.
  5. Хорошилов И.Е., Успенский Ю.В. Новые подходы в лечебном питании беременных и кормящих женщин. Гинекология. 2008; 4: 67—77.
  6. Громова О.А., Торшин И.Ю., Тетруашвили Н.К., Сидельникова В.М. Нутрициальный подход к профилактике избыточной массы тела новорожденных. Гинекология. 2010; 5: 56—62.
  7. Molloy A.M., Kirke P.N., Brody L.C., Scott J.M., Mills J.L. Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr. Bull. 2008; 29(2, Suppl.): S101—11.
  8. Smith A.D., Kim Y.I., Refsum H. Is folic acid good for everyone? Am. J. Clin. Nutr. 2008; 87(3): 517—33.
  9. Christian P., West K.P., Khatry S.K. Effects of maternal micronutrient supplementation on fetal loss and infant mortality: a cluster-randomized trial in Nepal. Am. J. Clin. Nutr. 2003; 78(6): 1194—202.
  10. Громова О.А., Торшин И.Ю. Применение фолиевой кислоты в акушерстве и гинекологии. М.: РСЦ ЮНЕСКО; 2009. 73 с.
  11. Alerno P., Bianchi F., Pierini A., Baldi F. Folic acid and congenital malformation: scientific evidence and public health strategies. Ann. Ig. 2008; 20(6): 519—30.
  12. Patterson D. Folate metabolism and the risk of Down syndrome. Downs Syndr. Res. Pract. 2008; 12(2): 93—7.
  13. Bailey L.B., Berry R.J. Folic acid supplementation and the occurrence of congenital heart defects, orofacial clefts, multiple births, and miscarriage. Am. J. Clin. Nutr. 2005; 81(5): 1213S—7S.
  14. Surén P., Roth C., Bresnahan M., Haugen M., Hornig M., Hirtz D. et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA. 2013; 309(6): 570—7.
  15. Czeizel A.E., Puho E. Maternal use of nutritional supplements during the first month of pregnancy and decreased risk of Down’s syndrome: case-control study. Nutrition. 2005; 21(6): 698—704.
  16. Луценко Н.Н. Поливитамины и минералы, как неотъемлимая часть питания женщины до, во время и после беременности. Русский медицинский журнал. 2004; 12(13): 819—20.
  17. Жученко Л.А. Первичная массовая профилактика фолатзависимых врожденных пороков развития. Российский вестник акушера—гинеколога. 2003; 3(1): 64—9.
  18. Жученко Л.А., Мельникова Е.Н., Степнова С.В. Профилактика врожденных пороков развития у плода поливитаминным комплексом элевит пронаталь. Журнал Российского общества акушеров—гинекологов. 2004; 1: 44—5.
  19. Donangelo C.M., King J.C. Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation. Nutrients. 2012; 4(7): 782—98.
  20. Mori R., Ota E., Middleton P., Tobe-Gai R., Mahomed K., Bhutta Z.A. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2012; (7): CD000230.
  21. Terroine T. Biochemical anomalies and teratogenic avitaminosis. Annee Biol. 1967; 6(7): 329—59.
  22. Black M.M. Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr. Bull. 2008; 29(2, Suppl.): S126—31.
  23. Molloy A.M., Kirke P.N., Troendle J.F. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic acid fortification. Pediatrics. 2009; 123(3): 917—23.
  24. Zhang T., Xin R., Gu X., Wang F. Maternal serum vitamin B12, folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. Publ. Health Nutr. 2009; 12(5): 680—6.
  25. Vujkovic M., Ocke M.C., van der Spek P. Maternal Western dietary patterns and the risk of developing a cleft lip with or without a cleft palate. Obstet. Gynecol. 2007; 110(2, Pt 1): 378-84.
  26. Формулярная система. Федеральное руководство. М.: ГЭОТАР-Медиа; 2010. 996 с.
  27. Thaver D., Saeed M.A., Bhutta Z.A. Pyridoxine (vitamin B6) supplementation in pregnancy. Cochrane Database Syst. Rev. 2006; (2): CD000179.
  28. Czeizel A.E. Periconceptional folic acid containing multivitamin supplementation. Eur. J. Obstet. Gynecol. Reprod. Biol. 1998; 78(2): 151—61.
  29. Picker J.D., Levy H.L. Homocystinuria caused by cystathionine beta-synthase deficiency. In: Pagon R.A., Adam M.P., Bird T.D., Dolan C.R., Fong C.T., Stephens K., eds. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2013. Initial Posting: January 15, 2004; Last Update: April 26, 2011.
  30. Chen C.P. Syndromes, disorders and maternal risk factors associated with neural tube defects (VI). Taiwan J. Obstet. Gynecol. 2008; 47(3): 267—75.
  31. Candito M., Rivet R., Herbeth B. Nutritional and genetic determinants of vitamin B and homocysteine metabolisms in neural tube defects: a multicenter case-control study. Am. J. Med. Genet. 2008; 146A(9): 1128—33.
  32. Shaw G.M., Vollset S.E., Carmichael S.L. Nested case-control study of one-carbon metabolites in mid-pregnancy and risks of cleft lip with and without cleft palate. Pediatr. Res. 2009; 66(5): 501—6.
  33. Yoshino K., Nishide M., Sankai T., Inagawa M., Yokota K., Moriyama Y. et al. Validity of brief food frequency questionnaire for estimation of dietary intakes of folate, vitamins B6 and B12, and their associations with plasma homocysteine concentrations. Int. J. Food Sci. Nutr. 2010; 61(1): 61-7. Erratum in: Int. J. Food Sci. Nutr. 2010; 61(4): 440.
  34. Mignini L.E., Latthe P.M. Mapping the theories of preeclampsia: the role of homocysteine. Obstet. Gynecol. 2005; 105(2): 411—25.
  35. Verkleij-Hagoort A.C., de Vries J.H., Ursem N.T., de Jonge R., Hop W.C., Steegers-Theunissen R.P. Dietary intake of B-vitamins in mothers born a child with a congenital heart defect. Eur. J. Nutr. 2006; 45(8): 478—86.
  36. Ronnenberg A.G., Venners S.A., Xu X., Chen C., Wang L., Guang W. et al. Preconception B-vitamin and homocysteine status, conception, and early pregnancy loss. Am. J. Epidemiol. 2007; 166(3): 304—12.
  37. Mornet E., Nunes M.E. Hypophosphatasia. In: Pagon R.A., Adam M.P., Bird T.D., Dolan C.R., Fong C.T., Stephens K., eds. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2013. 2007 Nov 20; Updated 2011 Nov 10.
  38. Robitaille J., Carmichael S.L., Shaw G.M., Olney R.S. Maternal nutrient intake and risks for transverse and longitudinal limb deficiencies: data from the National Birth Defects Prevention Study, 1997-2003. Birth Defects Res. A Clin. Mol. Teratol. 2009; 85(9): 773—9.
  39. Hara K., Akiyama Y. Collagen-related abnormalities, reduction in bone quality, and effects of menatetrenone in rats with a congenital ascorbic acid deficiency. J. Bone Miner. Metab. 2009; 27(3): 324—32.
  40. Dheen S.T., Tay S.S. Recent studies on neural tube defects in embryos of diabetic pregnancy: an overview. Curr. Med. Chem. 2009; 16(18): 2345—54.
  41. Cederberg J., Eriksson U.J. Antioxidative treatment ofpregnant diabetic rats diminishes embryonic dysmorphogenesis. Birth Defects Res. A Clin. Mol. Teratol. 2005; 73(7): 498—505.
  42. Klemmensen A., Tabor A., Osterdal M.L. Intake of vitamin C and E in pregnancy and risk of pre-eclampsia: prospective study among 57346 women. Br. J. Obstet. Gynaecol. 2009; 116(7): 964—74.
  43. Ochoa-Brust G.J., Fernandez A.R., Villanueva-Ruiz G.J. Daily intake of 100 mg ascorbic acid as urinary tract infection prophylactic agent during pregnancy. Acta Obstet. Gynecol. Scand. 2007; 86(7): 783—7.
  44. Rees G., Brooke Z., Doyle W., Costeloe K. The nutritional status of women in the first trimester of pregnancy. J. Roy. Soc. Promot. Health. 2005; 125(5): 232—8.
  45. Oliveira F.A., Galan D.T., Ribeiro A.M., Santos Cruz J. Thiamine deficiency during pregnancy leads to cerebellar neuronal death in rat offspring: role of voltage-dependent K+ channels. Brain Res. 2007; 1134(1): 79—86.
  46. Link G., Zempleni J., Bitsch I. The intrauterine turnover of thiamin in preterm and full-term infants. Int. J. Vitam. Nutr. Res. 1998; 68(4): 242—8.
  47. Emonts P., Seaksan S., Seidel L., Thoumsin H., Gaspard U., Albert A., Foidart J.M. Prediction of maternal predisposition to preeclampsia. Hypertens. Pregnancy. 2008; 27(3): 237—45.
  48. Cabrera R.M., Hill D.S., Etheredge A.J., Finnell R.H. Investigations into the etiology of neural tube defects. Birth Defects Res. C Embryo Today. 2004; 72(4): 330—44.
  49. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet. 1991; 338(8760): 131—7.
  50. King Q. Acute cardiac failure in the newborn due to thiamine deficiency. Exp. Med. Surg. 1967; 25(1): 173—7.
  51. Krapels I.P., van Rooij I.A., Ocke M.C. Maternal dietary B vitamin intake, other than folate, and the association with orofacial cleft in the offspring. Eur. J. Nutr. 2004; 43(1): 7—14.
  52. Yang W., Shaw G.M., Carmichael S.L., Rasmussen S.A., Waller D.K., Pober B.R., Anderka M.; National Birth Defects Prevention Study. Nutrient intakes in women and congenital diaphragmatic hernia in their offspring. Birth Defects Res. A Clin. Mol. Teratol. 2008; 82(3): 131—8.
  53. Squires M.W., Naber E.C. Vitamin profiles of eggs as indicators of nutritional status in the laying hen: riboflavin study. Poult. Sci. 1993; 72(3): 483—94.
  54. Chan J., Deng L., Mikael L.G. Low dietary choline and low dietary riboflavin during pregnancy influence reproductive outcomes and heart development in mice. Am. J. Clin. Nutr. 2010; 91(4): 1035—43.
  55. Smedts H.P., Rakhshandehroo M., Verkleij-Hagoort A.C., de Vries J. H., Ottenkamp J., Steegers E.A., Steegers-Theunissen R.P. Maternal intake of fat, riboflavin and nicotinamide and the risk of having offspring with congenital heart defects. Eur. J. Nutr. 2008; 47(7): 357—65.
  56. Neugebauer J. Riboflavin supplementation and preeclampsia. Int. J. Gynaecol. Obstet. 2006; 93(2): 136—7.
  57. Shaw G.M., Rasmussen S.A. Maternal nutrient intakes and risk of orofacial clefts. Epidemiology. 2006; 17(3): 285—91.
  58. Miyake Y. Osaka Maternal and Child Health Study Group. Dietary folate and vitamins B12, B6, and B2 intake and the risk of postpartum depression in Japan: the Osaka Maternal and Child Health Study. J. Affect. Disord. 2006; 96(1-2): 133-8.
  59. Chamberlain J.G., Nelson M.M. Multiple congenital abnormalities in the rat resulting from acute maternal niacin deficiency during pregnancy. Proc. Soc. Exp. Biol. Med. 1963; 112: 836.
  60. Pinsky L., Fraser F.C. Congenital malformations after a two-hour inactivation of nicotinamide in pregnant mice. Br. Med. J. 1960; 2(5193): 195—7.
  61. Krapels I.P., van Rooij I.A., Ocke M.C. Maternal nutritional status and the risk for orofacial cleft offspring in humans. J. Nutr. 2004; 134(11): 3106—13.
  62. Bustamante D., Morales P., Pereyra J.T. Nicotinamide prevents the effect of perinatal asphyxia on dopamine release evaluated with in vivo microdialysis 3 months after birth. Exp. Brain Res. 2007; 177(3): 358—69.
  63. Громова О.А., Торшин И.Ю. Дозирование витамина А при беременности. Consilium medicum. 2010; 12(6): 38—45.
  64. Marceau G., Gallot D., Lemery D., Sapin V. Metabolism of retinol during mammalian placental and embryonic development. Vitam. Horm. 2007; 75: 97—11.
  65. Громова О.А., Торшин И.Ю. Витамины и микроэлементы: между Сциллой и Харибдой. М.: МЦНМО, Наука; 2013. 702 с.
  66. Pan J., Baker K.M. Retinoic acid and the heart. Vitam. Horm. 2007; 75: 257—83.
  67. Zile M.H., Kostetskii I., Yuan S., Kostetskaia E., St Amand T.R., Chen Y., Jiang W. Retinoid signaling is required to complete the vertebrate cardiac left/right asymmetry pathway. Dev. Biol. 2000; 223(2): 323—38.
  68. Xing X., Tao F. Advance of study on vitamin A deficiency and excess associatied with congenital heart disease. Wei Sheng Yan Jiu. 2008; 37(6): 754—6.
  69. Halilagic A., Ribes V., Ghyselinck N.B., Zile M.H., Dolle P., Studer M. Retinoids control anterior and dorsal properties in the developing forebrain. Dev. Biol. 2007; 303(1): 362—75.
  70. Kot-Leibovich H., Fainsod A. Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis. Model. Mech. 2009; 2(5-6): 295—305.
  71. Dräger U. C. Retinoic acid signaling in the functioning brain. Sci. STKE. 2006; 2006(324): pe10.
  72. Chen K., Zhang X., Wei X.P. Antioxidant vitamin status during pregnancy in relation to cognitive development in the first two years of life. Early Hum. Dev. 2009; 85(7): 421—7.
  73. Askin D.F., Diehl-Jones W. Pathogenesis and prevention of chronic lung disease in the neonate. Crit. Care Nurs. Clin. North Am. 2009; 21(1): 11—25.
  74. Ma A.G., Schouten E.G., Zhang F.Z., Kok F.J., Yang F., Jiang D.C. et al. Retinol and riboflavin supplementation decreases the prevalence of anemia in Chinese pregnant women taking iron and folic acid supplements. J. Nutr. 2008; 138(10): 1946—50.
  75. Jiang Q., Christen S., Shigenaga M.K., Ames B.N. gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 2001; 74(6): 714—22.
  76. Mulligan M.L., Felton S.K., Riek A.E., Bernal-Mizrachi C. Implications of vitamin D deficiency in pregnancy and lactation. Am. J. Obstet. Gynecol. 2010; 202(5): 429, e1—9.
  77. Burne T.H. Transient prenatal vitamin D deficiency is associated with hyperlocomotion in adult rats. Behav. Brain Res. 2004; 154(2): 549—55.
  78. Eyles D., Brown J., Mackay-Sim A., McGrath J., Feron F. Vitamin D3 and brain development. Neuroscience. 2003; 118(3): 641—53.
  79. Shenoy S.D., Swift P., Cody D., Iqbal J. Maternal vitamin D deficiency, refractory neonatal hypocalcaemia, and nutritional rickets. Arch. Dis. Child. 2005; 90(4): 437—8.
  80. Blau E.B. Congenital cataracts and maternal vitamin D deficiency. Lancet. 1996; 347(9001): 626.
  81. Saffery R., Ellis J., Morley R. A convergent model for placental dysfunction encompassing combined sub-optimal one-carbon donor and vitamin D bioavailability. Med. Hypotheses. 2009; 73(6): 1023—8.
  82. Davis J.A. Multivitamin prophylaxis against neural-tube defects. Lancet. 1980; 1(8181): 1302.
  83. Li Z., Ye R., Zhang L., Li H., Liu J., Ren A. Folic acid supplementation during early pregnancy and the risk of gestational hypertension and preeclampsia. Hypertension. 2013; 61(4): 873—9.
  84. Hayes C., Werler M.M., Willett W.C., Mitchell A.A. Case— control study of periconceptional folic acid supplementation and oral clefts. Am. J. Epidemiol. 1996; 143: 1229—34.
  85. Czeizel A.E. The primary prevention of birth defects: Multivitamins or folic acid? Int. J. Med. Sci. 2004; 1(1): 50—61.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies