ACTIVE FOLATE FORMS IN OBSTETRICS


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

During pregnancy, folate deficiency leads to a substantial increase in the rate of malformations due to impaired DNA methylation. Folate deficiency is not always successfully compensated for by synthetic folic acid only since the latter in the body must be converted into active folate forms (tetrahydrofolates) through special enzyme systems. In many women, the functioning of these systems is impaired due to genetic defects, medications that block these enzymes, and other causes. This makes the use of active folates required to enhance the efficacy and safety of a compensating procedure for folic deficiency particularly in respective risk groups. This paper gives the results of a systematic analysis of the data of basic and clinical medicine, which point to the promise of using active folate forms for the nutritional support of pregnancy and other applications in obstetrics and gynecology. Unlike inactive folic acid, the excess of which blocks the metabolism of folates; excessive active folates do not inhibit folate metabolism. Therefore, active folates produce no side effects typical of the excess intake of folic acid and exert a positive effect in any genotype of the enzyme systems of folate biotransformations.

Full Text

Restricted Access

About the authors

O. A GROMOVA

Russian Satellite Center of Trace Element Institute for UNESCO; Ivanovo State Medical Academy, Ministry of Health and Social Development of Russia

Email: lunesco/gromova@gmail.com
Moscow

I. Yu TORSHIN

Russian Satellite Center of Trace Element Institute for UNESCO; Ivanovo State Medical Academy, Ministry of Health and Social Development of Russia

Moscow

N. K TETRUASHVILI

Academician V.I. Kulakov Russian Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health and Social Development of Russia

Moscow

O. A LIMANOVA

Russian Satellite Center of Trace Element Institute for UNESCO; Ivanovo State Medical Academy, Ministry of Health and Social Development of Russia

Moscow

References

  1. Торшин И.Ю., Громова О.А. 25 мгновений молекулярной фармакологии. М.: А-Гриф; 2012. 658 с.
  2. Громова О.А., Торшин И.Ю., Авдеева Н.В., Спиричев В.Б. Применение витаминов и микроэлементов у беременных в разных странах. Вопросы гинекологии, акушерства и перинатологии. 2011; 10(5): 62—71.
  3. Громова О.А., Торшин И.Ю., Лисицына Е.Ю. Гепатопротекторные свойства витаминов в преконцепции и при беременности. Земский врач. 2011; 4: 23—8.
  4. Greenberg J.A., Bell S.J., Guan Y., Yu Y.H. Folic acid supplementation and pregnancy: more than just neural tube defect prevention. Rev. Obstet. Gynecol. 2011; 4(2): 52—9.
  5. Czeizel A.E., Dudas I., Paput L., Banhidy F. Prevention of neural-tube defects with periconceptional folic acid, methylfolate, or multivitamins? Ann. Nutr. Metab. 2011; 58(4): 263—7.
  6. Цейцель Э. Первичная профилактика врожденных дефектов: поливитамины или фолиевая кислота? Гинекология. 2012; 5: 38—46.
  7. Громова О.А., Торшин И.Ю., Рудаков К.В. Клиническая и молекулярная фармакология фолиевой кислоты. Фолаты для беременных — все точки над „i”. Клиническая фармакология и фармакоэкономика. 2010; 3(1): 38—47.
  8. Oakley G.P.Jr., Adams M.J., Dickinson C.M. More folic acid for everyone, now. J. Nutr. 1996; 126(3): 751S—5S.
  9. Pietrzik K.F., Thorand B. Folate economy in pregnancy. Nutrition. 1997; 13(11-12): 975—7.
  10. Ребров В.Г., Громова О.А. Витамины, макро- и микроэлементы. М.: ГЭОТАР-Медиа; 2008. 959 с.
  11. Dary O. Nutritional interpretation of folic acid interventions. Nutr. Rev. 2009; 67(4): 235—44.
  12. Pietrzik K., Bailey L., Shane B. Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2010; 49(8): 535—48.
  13. Ifergan I., Assaraf Y.G. Molecular mechanisms of adaptation to folate deficiency. Vitam. Horm. 2008; 79: 99—143.
  14. Henderson G.I., Perez T., Schenker S., Mackins J., Antony A.C. Maternal-to-fetal transfer of 5-methyltetrahydrofolate by the perfused human placental cotyledon: evidence for a concentrative role by placental folate receptors in fetal folate delivery. J. Lab. Clin. Med. 1995; 126(2): 184—203.
  15. Sun S., Gui Y., Jiang Q., Song H. Dihydrofolate reductase is required for the development of heart and outflow tract in zebrafish. Acta Biochim. Biophys. Sin. (Shanghai). 2011; 43(12): 957—69.
  16. Hansen D.K., Barbee S.A. Antisense modulation of 5,10-methylenetetrahydrofolate reductase expression produces neural tube defects in mouse embryos. Reprod. Toxicol. 2001; 15(1): 21—9.
  17. Hyoun S.C., Obican S.G., Scialli A.R. Teratogen update: methotrexate. Birth Defects Res. A Clin. Mol. Teratol. 2012; 94(4): 187—207.
  18. Lee M.S., Bonner J.R., Bernard D.J. Disruption of the folate pathway in zebrafish causes developmental defects. BMC Dev. Biol. 2012; 12: 12.
  19. Yang X.J., Chen Y.P., Wang H.C., Zhao J., Zheng F.Y. Protective effect of calcium folinate against methotrexate-induced endosalpinx damage in rats. Fertil. Steril. 2011; 95(4): 1526—30.
  20. Wegner C., Nau H. Diurnal variation of folate concentrations in mouse embryo and plasma: the protective effect of folinic acid on valproic-acid-induced teratogenicity is time dependent. Reprod. Toxicol. 1991; 5(6): 465—71.
  21. Mangold S., Blau N. Cerebral folate deficiency: a neurometa-bolic syndrome? Mol. Genet. Metab. 2011; 104(3): 369—72.
  22. Pogribna M., Melnyk S., Pogribny I., Chango A., Yi P., James S.J. Homocysteine metabolism in children with Down syndrome: in vitro modulation. Am. J. Hum. Genet. 2001; 69(1): 88.
  23. Bodnar L.M., Himes K.P. Maternal serum folate species in early pregnancy and risk of preterm birth. Am. J. Clin. Nutr. 2010; 92(4): 864—71.
  24. Stark K.D., Pawlosky R.J. Maternal smoking is associated with decreased 5-methyltetrahydrofolate in cord plasma. Am. J. Clin. Nutr. 2007; 85(3): 796—802.
  25. Van Hecke M.V., Dekker J.M. Homocysteine, S-adenosylmethionine and S-adenosylhomocysteine are associated with retinal microvascular abnormalities: the Hoorn Study. Clin. Sci. 2008; 114(7): 479—87.
  26. Brody L.C., Conley M., Cox C., Kirke P.N., McKeever M.P., Mills J.L. et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/ methenyltetrahydrofolate cyclohydrolase/ formyltetrahydrofolate syn thetase is a maternal genetic risk factor for neural tube defects: report of the Birth Defects Research Group. Am. J. Hum. Genet. 2002; 71(5): 1207—15.
  27. Stanislawska-Sachadyn A., Brown K.S., Mitchell L.E. An insertion/deletion polymorphism of the dihydrofolate reductase (DHFR) gene is associated with serum and red blood cell folate concentrations in women. Hum. Genet. 2008; 123(3): 289.
  28. Chatzikyriakidou A. Distinct association ofSLC19A1 polymorphism -43T>C with red cell folate levels and of MTHFR polymorphism 677C>T with plasma folate levels. Clin. Biochem. 2008; 41(3): 174—6.
  29. Summers C.M., Mitchell L.E., Stanislawska-Sachadyn A. Genetic and lifestyle variables associated with homocysteine concentrations and the distribution of folate derivatives in healthy premenopausal women. Birth Defects Res. A Clin. Mol. Teratol. 2010; 88(8): 679—88.
  30. Kim K.N., Kim Y.J., Chang N. Effects of the interaction between the C677T 5,10-methylenetetrahydrofolate reductase polymorphism and serum B vitamins on homocysteine levels in pregnant women. Eur. J. Clin. Nutr. 2004; 58(1): 10—6.
  31. Yang Q.H., Botto L.D. Prevalence and effects of gene-gene and gene-nutrient interactions on serum folate and serum total homocysteine concentrations in the United States: findings from the third National Health and Nutrition Examination Survey DNA Bank. Am. J. Clin. Nutr. 2008; 88(1): 232—46.
  32. Guan L.X., Du X.Y., Wang J.X. Association of genetic polymorphisms in plasminogen activator inhibitor-1 gene and 5.10-methylenetetrahydrofolate reductase gene with recurrent early spontaneous abortion. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005; 22(3): 330—3.
  33. Van der Molen E.F. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene as a new risk factor for placental vasculopathy. Am. J. Obstet. Gynecol. 2000; 182(5): 1258—63.
  34. Coppede F., Migheli F., Bargagna S., Siciliano G., Antonucci I., Stuppia L. et al. Association of maternal polymorphisms in folate metabolizing genes with chromosome damage and risk of Down syndrome offspring. Neurosci. Lett. 2009; 449(1): 15.
  35. Hecht S. Common 677C-->T mutation of the 5,10-methylene-tetrahydrofolate reductase gene affects follicular estradiol synthesis. Fertil. Steril. 2009; 91(1): 56—61.
  36. Pavlik R. Divergent effects of the 677C>T mutation of the 5.10-methylenetetrahydrofolate reductase (MTHFR) gene on ovarian responsiveness and anti-Mullerian hormone concentrations. Fertil. Steril. 2011; 95(7): 2257—62.
  37. Ubeda-Martin N., Alonso-Aperte E. Morphological changes induced by valproate and its administration concomitant with folinic acid or S-adenosylmethionine in pregnant rats. Nutr. Hosp. 1998; 13(1): 41—9.
  38. Ubeda N., Alonso E. Valproate-induced developmental modifications maybe partially prevented by coadministration of folinic acid and S-adenosylmethionine. Int. J. Dev. Biol. 1996; Suppl. 1: 291S—2S.
  39. Elmazar M.M., Thiel R., Nau H. Effect of supplementation with folinic acid, vitamin B6, and vitamin B12 on valproic acid-induced teratogenesis in mice. Fundam. Appl. Toxicol. 1992; 18(3): 389—94.
  40. Громова О.А., Торшин И.Ю. Витамины и минералы — между Сциллой и Харибдой. М.: МЦНМО; 2013. 754 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies