Promises for using the possibilities of determining the level of follicular oxidative stress as a success criterion of assisted reproductive technology programs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article gives an update on the importance of the oxidative stress factor determining the success of assisted reproductive technology programs, as well as the quality of oocytes and embryos. Oxidative stress is defined as an imbalance between the pro-oxidant and anti-oxidant systems - the cause of the induction of oxidative stress is drastically increased reactive oxygen species (ROS) production and/or impaired antioxidant defense mechanisms. The review presents and discusses the data of studies into the dualistic nature of ROSs that are not only a maturation factor, but also perform a role of one of the major damaging factors during oocyte maturation. The induction of oxidative stress in the follicular antrum and fluid is shown to affect oocyte maturation and embryo fertilization and implantation during ovarian stimulation in the in vitro fertilization (IVF) programs. The review covers a controversial issue of whether measurements of the oxidation products of biological macromolecules in the blood and follicular fluid of patients may be used to predict IVF program success. It also discusses the impact of different ovarian stimulation protocols in the IVF/ICSI programs on the level of oxidative stress.

Full Text

Restricted Access

About the authors

K. A Ivancha

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: kristina.christina@yandex.ru
graduate student

E. A Kalinina

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: e_kalinina@oparina4.ru
MD, Head of the Department of in vitro fertilization

M. Yu Vysokikh

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation; A.N. Belozersky Research Institute of Physicochemical Biology

Email: m_vysokikh@oparina4.ru
PhD, Head of mitochondrial medicine research group, Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russia, Head of aging molecular mechanisms group, A.N. Belozersky Research Institute of Physicochemical Biology.

References

  1. Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002; 82: 47-95.
  2. Yao H., Guo L., Jiang B.H., Luo J., Shi X. Oxidative stress and chromium(VI) carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. 2008; 27: 77-88.
  3. Farinati F., Piciocchi M., Lavezzo E., Bortolami M., Cardin R. Oxidative stress and inducible nitric oxide synthase induction in carcinogenesis. Dig. Dis. 2010; 28: 579-84.
  4. Ziech D., Franco R., Pappa A., Panayiotidis M.I. Reactive oxygen species (ROS)--induced genetic and epigenetic alterations in human carcinogenesis. Mutat. Res. 2011; 711: 167-73.
  5. Agostinho P., Cunha R.A., Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des. 2010; 16: 2766-78.
  6. Romano A.D., Serviddio G., de Matthaeis A., Bellanti F., Vendemiale G. Oxidative stress and aging. J. Nephrol. 2008; 23(Suppl. 15): S29-36.
  7. Sohal R.S., Orr W.C. The redox stress hypothesis of aging. Free Radic. Biol. Med. 2012; 52: 539-55.
  8. Renke J., Popadiuk S., Wozniak M., Szlagatys-Sidorkiewicz A., Hansdorfer-Korzon R. Mast cells, their adenosine receptors and reactive oxygen species in chronic inflammatory pathologies of childhood. Przegl. Lek. 2006; 63: 554-6.
  9. Cadenas E., Davies K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 2000; 29: 222-30.
  10. Han D., Antunes F., Canali R., Rettori D., Cadenas E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J. Biol. Chem. 2003; 278(8): 5557-63.
  11. Buettner G.R. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med. Chem. 2011; 11: 341-6.
  12. Day B.J. Catalase and glutathione peroxidase mimics. Biochem. Pharmacol. 2009; 77(3): 285-96.
  13. Brillas E., Sires I., Oturan M.A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009; 109: 6570-631.
  14. Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007; 39: 44-84.
  15. Poeggeler B., Reiter R.J., Tan D.X., Chen L.D., Manchester L.C. Melatonin, hydroxyl radical mediated oxidative damage, and aging: a hypothesis. J. Pineal Res. 1993; 14: 151-68.
  16. Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006; 160: 1-40.
  17. Espey L.L. Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biol. Reprod. 1994; 50(2): 233-8.
  18. Richards J.S. Ovulation: new factors that prepare the oocyte for fertilization. Mol. Cell. Endocrinol. 2005; 234: 75-9.
  19. Agarwal A., Gupta S., Sharma R K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005; 3: 28.
  20. Behrman H.R., Kodaman P.H., Preston S.L., Gao S. Oxidative stress and the ovary. J. Soc. Gynecol. Investig. 2001; 8 (1, Suppl. Proceedings): S40-2.
  21. Behrman H.R., Aten R.F. Evidence that hydrogen peroxide blocks hormone-sensitive cholesterol transport into mitochondria of rat luteal cells. Endocrinology. 1991; 128(6): 2958-66.
  22. Vega M., Carrasco I., Castillo T., Troncoso J.L., Videla L.A., Devoto L. Functional luteolysis in response to hydrogen peroxide in human luteal cells. J. Endocrinol. 1995; 147(1): 177-82.
  23. Dumollard R., Campbell K., Halet G., Carroll J., Swann K. Regulation of cytosolic and mitochondrial ATP levels in mouse eggs and zygotes. Dev. Biol. 2008; 316: 431-40.
  24. Lawlor D. W., Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann. Bot. 2009; 103(4): 561-79.
  25. Combelles C.M., Albertini D.F. Assessment of oocyte quality following repeated gonadotropin stimulation in the mouse. Biol. Reprod. 2003; 68: 812-21.
  26. Kowaltowski A.J., Vercesi A.E. Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 1999; 26: 463-71.
  27. Yang H.W., Hwang K.J., Kwon H.C., Kim H.S., Choi K.W., Oh K.S. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 1998; 13: 998-1002.
  28. Wiener-Megnazi Z., Vardi L., Lissak A., Shnizer S., Reznick A.Z., Ishai D. et al. Oxidative stress indices in follicular fluid as measured by the thermochemiluminescence assay correlate with outcome parameters in in vitro fertilization. Fertil. Steril. 2004; 82(Suppl. 3): 1171-6.
  29. Bedaiwy M.A., Agarwal A., Falcone T., Goldberg J.M., Arrigain S., Mascha E. Relationship of follicular fluid oxidative stress parameters and outcome of intracytoplasmic sperm injection. Fertil. Steril. ASRM (abstracts). 2005; 84: S250-1.
  30. Oyawoye O., Abdel Gadir A., Garner A., Constantinovici N., Perrett C., Hardiman P. Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum. Reprod. 2003; 18: 2270-4.
  31. Paszkowski T., Traub A.I., Robinson S.Y., McMaster D. Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin. Chim. Acta. 1995; 236: 173-80.
  32. Pasqualotto E.B., Agarwal A., Sharma R.K., Izzo V.M., Pinotti J.A., Joshi N.J., Rose B.I. Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil. Steril. 2004; 81(4): 973-6.
  33. Paszkowski T., Clarke R.N. Antioxidative capacity of preimplantation embryo culture medium declines following the incubation of poor quality embryos. Hum. Reprod. 1996; 11: 2493-5.
  34. Paszkowski T., Clarke R.N., Hornstein M.D. Smoking induces oxidative stress inside the Graafian follicle. Hum. Reprod. 2002; 17: 921-5.
  35. Attaran M., Pasqualotto E., Falcone T., Goldberg J.M., Miller K.F., Agarwal A., Sharma R.K. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int. J. Fertil. Womens Med. 2000; 45: 314-20.
  36. Das S., Chattopadhyay R., Ghosh S., Ghosh S., Goswami S.K., Chakravarty B.N., Chaudhury K. Reactive oxygen species level in follicular fluid-embryo quality marker in IVF? Hum. Reprod. 2006; 21: 2403-7.
  37. Ruder E.H., Hartman T.J., Blumberg J., Goldman M.B. Oxidative stress and antioxidants: exposure and impact on female fertility. Hum. Reprod. Update. 2008; 14(4): 345-57.
  38. Tatone C., Amicarelli F., Carbone M.C., Monteleone P., Caserta D., Marci R. et al. Cellular and molecular aspects of ovarian follicle ageing. Hum. Reprod. Update. 2008; 14(2): 131-42.
  39. Takahashi T., Takahashi E., Igarashi H., Tezuka N., Kurachi H. Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Mol. Reprod. Dev. 2003; 66: 143-52.
  40. Borowiecka M., Wojsiat J., Polac I., Radwan M., Radwan P., Zbikowska H.M. Oxidative stress markers in follicular fluid of women undergoing in vitro fertilization and embryo transfer. Syst. Biol. Reprod. Med. 2012; 58(6): 301-5.
  41. Lin K.B.K., Shaunik S., Butts G., Fitzgerald G.A., Coutifaris C. Follicular fluid F2-isoprostanes: a novel assessment of oxidative stress. Fertil. Steril. ASRM (Abstract). 2005; 84: S47.
  42. Delgado Alves J., Radway-Bright E.L., Lee S., Grima B., Hothersall J., Ravirajan C.T., Isenberg D.A. Antiphospholipid antibodies are induced by in vitro fertilization and correlate with paraoxonase activity and total antioxidant capacity of plasma in infertile women. Lupus. 2005; 14(5): 373-80.
  43. Fisch B., Rikover Y., Shohat L., Zurgil N., Tadir Y., Ovadia J. et al. The relationship between in vitro fertilization and naturally occurring antibodies: evidence for increased production of antiphospholipid autoantibodies. Fertil. Steril. 1991; 56(4): 718-24.
  44. Birdsall M.A., Lockwood G.M., Ledger W.L., Johnson P.M., Chamley L.W. Antiphospholipid antibodies in women having in-vitro fertilization. Hum. Reprod. 1996; 11(6): 1185-9.
  45. Velthut A., Zilmer M., Zilmer K., Kaart T., Karro H., Salumets A. Elevated blood plasma antioxidant status is favourable for achieving IVF/ICSI pregnancy. Reprod. Biomed. Online. 2013; 26(4): 345-52.
  46. Celik E., Celik O., Kumbak B., Yilmaz E., Turkcuoglu I., Simsek Y. et al. А comparative study on oxidative and antioxidative markers of serum and follicular fluid in GnRH agonist and antagonist cycles. J. Assist. Reprod. Genet. 2012; 29(11): 1175-83.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies