THE NOTCH SIGNALING PATHWAY IN THE HUMAN PLACENTA DURING PHYSIOLOGICAL AND COMPLICATED PREGNANCY


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The literature review gives data on the history of the discovery of the Notch signaling pathway, its molecular structure, cell localization, and functions of its major components, as well as those on the canonical and noncanonical pathways of their interaction, by specifying the basic steps in activating the structural components of the pathway. Particular emphasis is placed on the specific features of Notch signaling pathway functioning in the human placenta during physiological pregnancy; the specific features of the temporary and spatial expression of receptors and ligands in the placental Notch system, as well as its role in the course of placentation are described. The functions of the Notch signaling system in the structures of villous and extravillous trophoblasts are detailed; data on its role in the processes of trophoblast invasion, proliferation, and differentiation, as well as placental vasculogenesis and angiogenesis are given. The specific features of Notch system functioning in some pregnancy complications, mainly in preeclampsia, are depicted and the possible mechanisms by which the components of this system are involved in the development of pregnancy complications are also given.

Full Text

Restricted Access

About the authors

Konstantin A. Pavlov

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: kpavlov@oparina4.ru
PhD in medicine, member of the 2nd Pathanatomy department 117997, Russia, Moscow, Ac. Oparina str. 4

Elena A. Dubova

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: e_dubova@oparina4.ru
PhD in medicine, member of the 2nd Pathanatomy department 117997, Russia, Moscow, Ac. Oparina str. 4

AІexander I. Shchegolev

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: ashegolev@oparina4.ru
PhD, Chief of pathology Department 117997, Russia, Moscow, Ac. Oparina str. 4

References

  1. Morgan T. The theory of the gene. Am. Naturalist. 1917; 51: 513-44.
  2. Artavanis-Tsakonas S., Rand M.D., Lake R.J. Notch signaling: cell fate control and signal integration in development. Science. 1999; 284(5415): 770-6.
  3. Kopan R., Hagan M.X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009; 137(2): 216-33.
  4. D’Souza B., Meloty-KapeBa L., Weinmaster G. Canonical and non-canonical Notch ligands. Curr. Top. Dev. Biol. 2010; 92: 73-129.
  5. Radtke F., Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat. Rev. Cancer. 2003; 3(10): 756-67.
  6. Pannuti A., Foreman K., Rizzo P., Osipo C., Golde T., Osborne B. et al. Targeting Notch to target cancer stem cells. Clin. Cancer Res. 2010; 16(12): 3141-52.
  7. Limbourg A., Ploom M., Elligsen D., Sorensen I., Ziegelhoeffer T., Gossler A. et al. Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ. Res. 2007; 100(3): 363-71.
  8. Kovall R.A., Blacklow S.C. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr. Top. Dev. Biol. 2010; 92: 31-71.
  9. Wharton K.A., Johansen K.M., Xu T., Artavanis-Tsakonas S. Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell. 1985; 43(3, Pt 2): 567-81.
  10. Rebay I., Fehon R.G., Artavanis-Tsakonas S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell. 1993; 74(2): 319-29.
  11. Greenwald I. Structure/function studies of lin-12/Notch proteins. Curr. Opin. Genet. Dev. 1994; 4(4): 556-62.
  12. Andersson E.R., Sandberg R., Lendahl U. Notch signaling: simplicity in design, versatility in function. Development. 2011; 138(17): 3593-612.
  13. Pan D, Rubin G.M. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell. 1997; 90(2): 271-80.
  14. Schroeter E.H., Kisslinger J.A., Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998; 393(6683): 382-6.
  15. De Strooper B., Annaert W, Cupers P., Saftig P., Craessaerts K., Mumm J.S. et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999; 398(6727): 518-22.
  16. Schweisguth F. Regulation of Notch signaling activity. Curr. Biol. 2004; 14(3): R129-38.
  17. Lai E.C. Notch signaling: control of cell communication and cell fate. Development. 2004; 131(5): 965-73.
  18. Gazave E., Lapebie P., Richards G.S., Brunet F., Ereskovsky A.V., Degnan B. M. et al. Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol. Biol. 2009; 9: 249.
  19. Fortini M.E. Notch and presenilin: a proteolytic mechanism emerges. Curr. Opin. Cell Biol. 2001; 13(5): 627-34.
  20. Ma Q.H., Futagawa T., Yang W.L., Jiang X.D., Zeng L., Takeda Y. et al. A TAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nat. Cell Biol. 2008; 10(3): 283-94.
  21. Lu F.M., Lux S.E. Constitutively active human Notch1 binds to the transcription factor CBF1 and stimulates transcription through a promoter containing a CBF1-responsive element. Proc. Natl. Acad. Sci. USA. 1996; 93(11): 5663-7.
  22. PetcherskiA.G., Kimble J. LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature. 2000; 405(6784): 364-8.
  23. Martinez Arias A., Zecchini V., Brennan K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr. Opin. Genet. Dev. 2002; 12(5): 524-33.
  24. Oswald F., Winkler M., Cao Y., Astrahantseff K., Bourteele S., Knochel W. et al. RBP-Jkappa/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Mol. Cell. Biol. 2005; 25(23): 10379-90.
  25. Wu L., Aster J. C., Blacklow S.C., Lake R., Artavanis-Tsakonas S., Griffin J.D. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat. Genet. 2000; 26(4): 484-9.
  26. Andersen P, Uosaki H., Shenje L.T., Kwon C. Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol. 2012; 22(5): 257-65.
  27. Fiuza U.M., Arias A.M. Cell and molecular biology of Notch. J. Endocrinol. 2007; 194(3): 459-74.
  28. Afshar Y., Miele L., Fazleabas A.T. Notch1 is regulated by chorionic gonadotropin and progesterone in endometrial stromal cells and modulates decidualization in primates. Endocrinology. 2012; 153(6): 2884-96.
  29. De Falco M., Cobellis L., Giraldi D., Mastrogiacomo A., Perna A., Colacurci N. et al. Expression and distribution of Notch protein members in human placenta throughout pregnancy. Placenta. 2007; 28(2-3): 118-26.
  30. Gasperowicz M., Otto F The Notch signalling pathway in the development of the mouse placenta. Placenta. 2008; 29(8): 651-9.
  31. Nakayama H., Liu Y., Stifani S., Cross J.C. Developmental restriction of Mash-2 expression in trophoblast correlates with potential activation of the notch-2 pathway. Dev. Genet. 1997; 21(1): 21-30.
  32. Lunghi L., Ferretti M.E., Medici S., Biondi C., Vesce F. Control of human trophoblast function. Reprod. Biol. Endocrinol. 2007; 5: 6.
  33. Павлов К.А., Дубова Е.А., Щеголев А.И. Фетоплацентарный ангиогенез при нормальной беременности: роль плацентарного фактора роста и ангиопоэтинов. Акушерство и гинекология. 2010; 6: 10-5.
  34. Павлов К.А., Дубова Е.А., Щеголев А.И. Фетоплацентарный ангиогенез при нормальной беременности: роль сосудистого эндотелиального фактора роста. Акушерство и гинекология. 2011; 3: 11-6.
  35. Zhou Y., Fisher S.J., Janatpour M., Genbacev O., Dejana E., Wheelock M. et al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J. Clin. Invest. 1997; 99(9): 2139-51.
  36. Zhou Y., Damsky C.H., Fisher S.J. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J. Clin. Invest. 1997; 99(9): 2152-64.
  37. Norwitz E.R. Defective implantation and placentation: laying the blueprint for pregnancy complications. Reprod. Biomed. Online. 2006; 13(4): 591-9.
  38. Brosens J.J., Pijnenborg R., Brosens I.A. The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am. J. Obstet. Gynecol. 2002; 187(5): 1416-23.
  39. Herr F., Schreiner I., Baal N., Pfarrer C., Zygmunt M. Expression patterns of Notch receptors and their ligands Jagged and Delta in human placenta. Placenta. 2011; 32(8): 554-63.
  40. Hunkapiller N.M., Gasperowicz M., Kapidzic M., Plaks V., Maltepe E., Kitajewski J. et al. A role for Notch signaling in trophoblast endovascular invasion and in the pathogenesis of pre-eclampsia. Development. 2011; 138(14): 2987-98.
  41. Zhao W.-X., Lin J.-H. Notch signaling pathway and human placenta. Int. J. Med. Sci. 2012; 9: 447-52.
  42. Sahin Z., Acar N., Ozbey O., Ustunel I., Demir R. Distribution of Notch family proteins in intrauterine growth restriction and hypertension complicated human term placentas. Acta Histochem. 2011; 113(3): 270-6.
  43. Rizzo P, Miao H., D’Souza G., Osipo C., Song L.L., Yun J. et al. Cross-talk between Notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res. 2008; 68(13): 5226-35.
  44. Kume T. Ligand-dependent Notch signaling in vascular formation. Adv. Exp. Med. Biol. 2012; 727: 210-22.
  45. Cobellis L., Mastrogiacomo A., Federico E., Schettino M. T., De Falco M., Manente L. et al. Distribution of Notch protein members in normal and preeclampsia-complicated placentas. Cell Tissue Res. 2007; 330(3): 527-34.
  46. Wagener J., Yang W., Kazuschke K., Winterhager E., Gellhaus A. CCN3 regulates proliferation and migration properties in Jeg3 trophoblast cells via ERK1/2, Akt and Notch signalling. Mol. Hum. Reprod. 2013; 19(4): 237-49.
  47. Fang Y., Yu S., Ma Y., Sun P, Ma D., Ji C. et al. Association of Dll4/Notch and HIF-1a -VEGF signaling in the angiogenesis of missed abortion. PLoS One. 2013; 8(8): e70667.
  48. Pavlov K.A., Dubova E.A., Shchegolev A.I., Sukhikh G.T. The role of placental Notch signaling pathway disturbances in preeclampsia. Virchows Arch. 2013; 463 (1): 119.
  49. Founds S.A., Conley Y.P., Lyons-Weiler J.F., Jeyabalan A., Hogge W.A., Conrad K. P Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta. 2009; 30(1): 15-24.
  50. Cuman C., Menkhorst E., Winship A., Van Sinderen M., Osianlis T., Rombauts L.J. et al. Fetal-maternal communication: the role of Notch signalling in embryo implantation. Reproduction. 2014; 147(3): R75-86.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies