Aliphatic polyester microparticles obtained with supercritical carbon dioxide as a volume-forming agent for the treatment of stress urinary incontinence


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To estimate possibilities for using the aliphatic polyester microparticles obtained by supercritical carbon dioxide as a volume-forming agent for the treatment of stress urinary incontinence. Materials and methods. Bioresorbable polymer microparticles were obtained from amorphous D,L-polylactides, polylactoglycolide, and low-molecular weight poly-ε-caprolactone, by using the particles from gas saturated solution (PGSS) and supercritical fluid (SCF) monolithization, followed by cryogrinding. The cytotoxicity and proliferative activity of multipotent stromal cells (MSCs) were assessed directly calculating the cell nuclei and using the xCELLigence monitoring system. Results. Ten types of experimental samples of 100-150-μm microparticles were prepared. Two microcarriers having the least resorption rate and a better resistance to mechanical exposures: polylactide PDL05-SCF and polycaprolactone PCL14-SCF were selected. These samples and their resorption products did not affect the dynamics of MSC expansion and had good adhesive properties. Conclusion. The microparticles obtained by the technology of SCF monolithization, followed by cryogrinding, are characterized by optimal sizes and morphology, stability under culture medium conditions, they fail to have a cytotoxic effect and to suppress the proliferative activity of cells and they also have marked adhesive properties.

Full Text

Restricted Access

About the authors

Timur Khaysamudinovich Fatkhudinov

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia; Research Institute of Human Morphology, Russian Academy of Medical Sciences

Email: tfat@yandex.ru
MD, PhD, head of laboratory of Regenerative Medicine; leading researcher

Vladimir Karpovich Popov

Institute of Laser and Information Technology Problems, Russian Academy of Sciences

Email: popov@laser.ru
Candidate of Physical and Mathematical Sciences, Head of the Laboratory of supercritical fluid technology

Irina Vladimirovna Arutyunyan

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia; Research Institute of Human Morphology, Russian Academy of Medical Sciences

Email: labrosta@yandex.ru
researcher

Sergey Eduardovitch Bogorodsky

Institute of Laser and Information Technology Problems, Russian Academy of Sciences

Email: bogens2@email.ru
researcher

Larisa Ivanovna Krotova

Institute of Laser and Information Technology Problems, Russian Academy of Sciences

Email: krollar@yandex.ru
researcher

Andrey Vitalevich Makarov

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia; Research Institute of Human Morphology, Russian Academy of Medical Sciences

Email: anvitmak@yandex.ru
MD, PhD, senior researcher

Andrey Vladimirovich Elchaninov

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia; Research Institute of Human Morphology, Russian Academy of Medical Sciences

Email: elchandrey@yandex.ru
researcher

Evgeniya Yurevna Kananykhina

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia; Research Institute of Human Morphology, Russian Academy of Medical Sciences

Email: e.kananykhina@gmail.com
junior researcher

Elmira Sharipovna Raimova

N.I. Pirogov Russian National Research Medical University

Email: elram2007@rambler.ru
docent

Galina Borisovna Bolshakova

Research Institute of Human Morphology, Russian Academy of Medical Sciences

Email: gbolshakova@gmail.com
Sc.D., head of the Laboratory of growth and development

Tatiana Alexandrovna Teterina

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: palpebra@inbox.ru
graduate student

Inna Anatolievna Apolikhina

I.M. Sechenov First Moscow State Medical University; Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: apolikhina@inbox.ru
MD, Professor, Department of obstetrics, gynecology, perinatology and reproductology; head of the gynecological department of Rehabilitation and hospital day care

Gennady Tikhonovich Sukhikh

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia; I.M. Sechenov First Moscow State Medical University

Email: g_sukhikh@oparina4.ru
academician of Russian Academy of Medical Sciences, MD, PhD, professor, Honored Master of Science of the Russian Federation, director; head of the department of obstetrics, gynecology, perinatology and reproductology

References

  1. Pickard R., Reaper J., Wyness L., Cody D.J., McClinton S., N’Dow J. Periurethral inj ection therapy for urinary incontinence in women. Cochrane Database Syst. Rev. 2003; (2): CD003881.
  2. Rovner E.S., Wein A.J. Treatment options for stress urinary incontinence. Rev. Urol. 2004; 6(Suppl. 3): S29-47.
  3. Kirchin V., Page T., Keegan P.E., Atiemo K., Cody J.D., McClinton S. Urethral injection therapy for urinary incontinence in women. Cochrane Database Syst. Rev. 2012; (2): CD003881.
  4. Oh S.H., Kim I.G., Lee J.Y., Lee J.Y., Lee J.H. Bioactive porous beads as an injectable urethral bulking agent: their in vitro evaluation on smooth muscle cell differentiation. Tissue Eng. Part A. 2011; 17(5-6): 655-64.
  5. Cho E.R., Kang S.W., Kim B.S. Poly(lactic-co-glycolic acid) microspheres as a potential bulking agent for urological injection therapy: preliminary results. J. Biomed. Mater. Res. B Appl. Biomater. 2005; 72(1): 166-72.
  6. Cho E.R., Kang S.W., Park H.J., Cho Y.S., Lee Y.S., Kim J.C. et al. Submucosal injection of poly(lactic-co-glycolic acid) microspheres in rabbit bladder as a potential treatment for urinary incontinence and vesicoureteral reflux: preliminary results. J. Biomater. Sci. Polym. Ed. 2005; 16(9): 1109-20.
  7. Thaker H., Sharma A.K. Regenerative medicine based applications to combat stress urinary incontinence. World J. Stem Cells. 2013; 5(4): 112-23.
  8. Tai H., Popov V.K., Shakesheff K.M., Howdle S.M. Putting the fizz into chemistry: applications of supercritical carbon dioxide in tissue engineering, drug delivery and synthesis of novel block copolymers. Biochem. Soc. Trans. 2007; 35(Pt 3): 516-21.
  9. Гумеров Ф.М., Сабирзянов А.Н., Гумерова Г.И. Суб- и сверхкритические флюиды в процессах переработки полимеров. М.: Фэн; 2000. 320 с. [Gumerov F.M., Sabirzyanov A.N., Gumerova G.I. Sub-and supercritical fluids in polymer processing. M.: Fen; 2000. 320 p. (in Russian]
  10. Севастьянов В.И., Кирпичников М.П., ред. Биосовместимые материалы. М.: МИА; 2011. 560 с. [Sevastyanov V.I., Kirpichnikov M.P., eds. Biocompatible materials. M.: MIA; 2011. 560 p. (in Russian)]
  11. Богородский С.Э., Кротова Л.И., Минаева С.А., Мишаков Г.В., Попов В.К., Басок Ю.Б., Севастьянов В.И. Сверхкритическая флюидная микронизация и инкапсуляция ибупрофена в микрочастицы алифатических полиэфиров. Перспективные материалы. 2013; 1: 23-32. [Bogorodskiy S.E., Krotova L.I., Minaeva S.A., Mishakov G.V., Popov V.K., Basok Yu.B., Sevastyanov V.I. Supercritical fluid micronization and encapsulation of ibuprofen microparticles in aliphatic polyesters. Perspektivnyie materialyi. 2013; 1: 23-32. (in Russian)]
  12. Богородский С.Э., Зархина Т.С., Кузнецов Е.В., Минаева С.А., Попов В.К., Соловьева А.Б., Тимашев П.С. Морфологические изменения микроструктуры полимолочной кислоты под действием сверхкритического диоксида углерода. Сверхкритические флюиды: Теория и практика. 2013; 2: 84-93. [Bogorodskiy S.E., Zarhina T.S., Kuznetsov E.V., Minaeva S.A., Popov V.K., Soloveva A.B., Timashev P.S. Morphological changes in the microstructure of polylactic acid by the action of the supercritical carbon dioxide. Sverhkriticheskie flyuidyi: Teoriya i praktika. 2013; 2: 84-93. (in Russian)]
  13. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-7.
  14. Mangera A., Bullock A.J., Roman S., Chappie C.R., MacNeil S. Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair. Br. J. Urol. Int. 2013; 112(5): 674-85.
  15. Thiel M., Rodrigues Palma P.C., Riccetto C.L., Dambros M., Netto N.R. Jr. A stereological analysis of fibrosis and inflammatory reaction induced by four different synthetic slings. Br. J. Urol. Int. 2005; 95(6): 833-7.
  16. Garcia S.N., Gutierrez L., McNulty A. Real-time cellular analysis as a novel approach for in vitro cytotoxicity testing of medical device extracts. J. Biomed. Mater. Res. A. 2013; 101(7): 2097-106.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies