Pharmacogenetic approach to preventing folate deficiency: L-5-methyltetrahydrofolate or folic acid?


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To analyze data on the impact of single nucleotide polymorphisms on the metabolic features of different biochemical folate formulations used in clinical practice and to evaluate the efficiency and safety of using folate-containing drugs in the context of pharmacogenetics. Subject and methods. Publications over the past 20 years on the impact of polymorphism in different genes of folate cycle enzymes on the efficiency and safety of using L-methylfolate and folic acid were sought in the NSBI PubMed database. Results. The peculiarities of the use of folate-containing drugs are described and data on the impact of polymorphism in the key genes (MTHFR, MTR, MTRR, SLC19A1, MTHFD1, SHMT1, and DHFR) on the metabolic features of L-methylfolate and folic acid are given. There is strong evidence that multivitamin supplements containing 800 μg of folic acid have a high protective effect in preventing congenital malformations. Conclusion. The use of alternative sources of folates versus traditionally administered folic acid has failed to demonstrate unique advantages, but may be a potentially promising area in a further research search.

Full Text

Restricted Access

About the authors

A. E Donnikov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: donnikov@dna-technology.ru
PhD, senior staff scientist of laboratory of molecular genetic methods

References

  1. Wallingford J.B., Niswander L.A., Shaw G.M., Finnell R.H. The continuing challenge of understanding, preventing, and treating neural tube defects. Science. 2013; 339(6123): 1222002.
  2. Coates P.M., Betz J.M., Blackman M.R., Cragg G.M., Levine M., Moss J., White J.D. Folate. In: Encyclopedia of dietary supplements. New York: Marcel Dekker; 2005: 219-28.
  3. Fox J.T., Stover P.J. Folate-mediated one-carbon metabolism. Vitam. Horm. 2008; 79(1): 1-44.
  4. Monteiro J.P., Wise C., Morine M.J., Teitel C., Pence L., Williams A. et al. Methylation potential associated with diet, genotype, protein, and metabolite levels in the Delta Obesity Vitamin Study. Genes Nutr. 2014; 9(3): 403.
  5. Penney D.S., Miller K.G. Nutritional counseling for vegetarians during pregnancy and lactation. J. Midwifery Womens Health. 2008; 53(1): 37-44.
  6. Skibola C.F., Smith M. T., Kane E., Roman E., Rollinson S., Cartwright R.A., Morgan G. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc. Natl. Acad. Sci. USA. 1999; 96(22): 12810-5.
  7. Costello J.F., Plass C. Methylation matters. J. Med. Genet. 2001; 38(5): 285-303
  8. Тадтаева З.Г., Кацадзе Ю.Л. Полиморфизм гена метилентетрагидрофолатредуктазы, гипергомоцистеинемия и возможности ee медикаментозной коррекции при мигрени у детей. Казанский медицинский журнал. 2007; 88(1): 16-20
  9. Johnson C. Y., Little J. Folate intake, markers of folate status and oral clefts: is the evidence converging? Int. J. Epidemiol. 2008; 37(5): 1041-58.
  10. Northrup H., Volcik K.A. Spina bifida and other neural tube defects. Curr. Probl. Pediatr. 2000; 30(10): 313-32.
  11. Lucock M. Is folic acid the ultimate functional food component for disease prevention? BMJ. 2004; 328(7433): 211-4.
  12. Fenech M. Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat. Res. 2012; 733(1-2): 21-33.
  13. Hollis N.D., Allen E.G., Oliver T.R., Tinker S.W., Druschel C., Hobbs C.A. et al. Preconception folic acid supplementation and risk for chromosome 21 nondisjunction: a report from the National Down Syndrome Project. Am. J. Med. Genet. Part A. 2013; 161A(3): 438-44.
  14. Coppede F. The genetics of folate metabolism and maternal risk of birth of a child with Down syndrome and associated congenital heart defects. Front. Genet. 2015; 6: 223.
  15. Bramswig S., Prinz-Langenohl R., Lamers Y., Tobolski O., Wintergerst E., Berthold H.K., Pietrzik K. Supplementation with a multivitamin containing 800 microg of folic acid shortens the time to reach the preventive red blood cell folate concentration in healthy women. Int. J. Vitam. Nutr. Res. 2009; 79(2): 61-70.
  16. Czeizel A.E., Dudas I., Paput L., Banhidy F. Prevention of neural-tube defects with periconceptional folic acid, methylfolate, or multivitamins? Ann. Nutr. Metab. 2011; 58(4): 263-71.
  17. U.S. Preventive Services Task Force. Folic acid for the prevention of neural tube defects. Ann. Intern. Med. 2009; 150(9): 626-31.
  18. Czeizel A.E., Dobo M., Vargha P. Hungarian cohort-controlled trial of periconceptional multivitamin supplementation shows a reduction in certain congenital abnormalities. Birth Defects Res. A. Clin. Mol. Teratol. 2004; 70(11): 853-61.
  19. Smith A.D., Kim Y. I., Refsum H. Is folic acid good for everyone? Am. J. Clin. Nutr. 2008; 87(3): 517-33.
  20. Yajnik C.S., Deshpande S.S., Jackson A.A., Refsum H., Rao S., Fisher D.J. et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia. 2008; 51(1): 29-38.
  21. Orjuela M.A., Cabrera-Munoz L., Paul L., Ramirez-Ortiz M.A., Liu X., Chen J. et al. Risk of retinoblastoma is associated with a maternal polymorphism in dihydrofolatereductase (DHFR) and prenatal folic acid intake. Cancer. 2012; 118(23): 5912-9.
  22. Morris M.S., Jacques P.F., Rosenberg I.H., Selhub J. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am. J. Clin. Nutr. 2007; 85(1): 193-200.
  23. Osterhues A., Holzgreve W., Michels K.B. Shall we put the world on folate? Lancet. 2009; 374(9694): 959-61.
  24. Boulet S.L., Yang Q., Mai C., Kirby R.S., Collins J.S., Robbins J.M. et al. Trends in the postfortification prevalence of spina bifida and anencephaly in the United States. Birth Defects Res. A. Clin. Mol. Teratol. 2008; 82(7): 527-32.
  25. Ionescu-Ittu R., Marelli A.J., Mackie A.S., Pilote L. Prevalence of severe congenital heart disease after folic acid fortification of grain products: time trend analysis in Quebec, Canada. BMJ. 2009; 338: b1673.
  26. Bentley T.G., Weinstein M.C., Willett W.C., Kuntz K.M. A cost-effectiveness analysis of folic acid fortification policy in the United States. Publ. Health Nutr. 2009; 12(4): 455-67.
  27. Hoyo C., Murtha A.P., Schildkraut J.M., Forman M.R., Calingaert B., Demark-Wahnefried W. et al. Folic acid supplementation before and during pregnancy in the Newborn Epigenetics Study (NEST). BMC Publ. Health. 2011; 11(1): 46.
  28. Кузнецова И.В., Коновалов В.А. Фолиевая кислота и ее роль в женской репродукции. Гинекология. 2014; 16(4): 17-23
  29. Lamers Y., Prinz-Langenohl R., Bramswig S., Pietrzik K. Red blood cell folate concentrations increase more after supplementation with [6S]-5-methyltetrahydrofolate than with folic acid in women of childbearing age. Am. J. Clin. Nutr. 2006; 84(1): 156-61.
  30. Venn B.J., Green T.J., Moser R., McKenzie J.E., Skeaff C.M., Mann J. Increases in blood folate indices are similar in women of childbearing age supplemented with [6S]-5-methyltetrahydrofolate and folic acid. J. Nutr. 2002; 132(11): 3353-5.
  31. Ших Е.В., Махова А.А. Преимущества проведения коррекции фолат-ного статуса с использованием витаминно-минерального комплекса, содержащего метафолин. Трудный пациент. 2013; 11(8-9): 26-31.
  32. Zhao R., Matherly L.H., Goldman I.D. Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev. Mol. Med. 2009; 11: e4.
  33. Patanwala I., King M.J., Barrett D.A., Rose J., Jackson R., Hudson M. et al. Folic acid handling by the human gut: implications for food fortification and supplementation. Am. J. Clin. Nutr. 2014; 100(2): 593-9.
  34. Kelly P., McPartlin J., Goggins M., Weir D.G., Scott J.M. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am. J. Clin. Nutr. 1997; 65(6): 1790-5.
  35. Bailey S.W., Ayling J.E. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc. Natl. Acad. Sci. USA. 2009; 106(36): 15424-9.
  36. Tactacan G.B., Jing M., Thiessen S., Rodriguez-Lecompte J.C., O’Connor D.L., Guenter W., House J.D. Characterization of folate-dependent enzymes and indices of folate status in laying hens supplemented with folic acid or 5-methyltetrahydrofolate. Poultry Sci. 2010; 89(4): 688-96.
  37. Prinz-Langenohl R., Bramswig S., Tobolski O., Smulders Y.M., Smith D.E., Finglas P.M., Pietrzik K. [6S]-5-methyltetrahydrofolate increases plasma folate more effectively than folic acid in women with the homozygous or wild-type 677C-->T polymorphism of methylenetetrahydrofolate reductase. Br. J. Pharmacol. 2009; 158(8): 2014-21.
  38. Anderson D.D., Stover P.J. SHMT1 and SHMT2 are functionally redundant in nuclear de novo thymidylate biosynthesis. PLoS One. 2009; 4(6): e5839.
  39. Martinov M.V., Vitvitsky V.M., Banerjee R., Ataullakhanov F.I. The logic of the hepatic methionine metabolic cycle. Biochim. Biophys. Acta. 2010; 1804(1): 89-96.
  40. Stover P.J. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. J. Nutrigenet. Nutrigenom. 2011; 4(5): 293-305.
  41. Franke B., Vermeulen S.H., Steegers-Theunissen R.P., Coenen M.J., Schijvenaars M.M., Scheffer H. et al. An association study of 45 folate-related genes in spina bifida: Involvement of cubilin (CUBN) and tRNA aspartic acid methyltransferase 1 (TRDMT1). Birth Defects Res. A. Clin. Mol. Teratol. 2009; 85(3): 216-26.
  42. Slattery M.L., Potter J.D., Samowitz W., Schaffer D., Leppert M. Methylenetetrahydrofolate reductase, diet, and risk of colon cancer. Cancer Epidemiol. Biomarkers Prev. 1999; 8(6): 513-8
  43. Silaste M.L., Rantala M., Sampi M., Alfthan G., Aro A., Kesaniemi Y. A. Polymorphisms of key enzymes in homocysteine metabolism affect diet responsiveness of plasma homocysteine in healthy women. J. Nutr. 2001; 131(10): 2643-7
  44. Moll S., Varga E.A. Homocysteine and MTHFR mutations. Circulation. 2015; 132(1): e6-9
  45. Barbosa P.R., Stabler S.P., Machado A.L., Braga R.C., Hirata R.D., Hirata M.H. et al. Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women. Eur. J. Clin. Nutr. 2008; 62(8): 1010-21.
  46. Chango A., Emery-Fillon N., de Courcy G.P., Lambert D., Pfister M., Rosenblatt D.S., Nicolas J.P. A polymorphism (80G->A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol. Genet. Metab. 2000; 70(4): 310-5.
  47. Gong D., Gu H., Zhang Y., Gong J., Nie Y., Wang J. et al. Methylenetetrahydrofolate reductase C677T and reduced folate carrier 80 G>A polymorphisms are associated with an increased risk of conotruncal heart defects. Clin. Chem. Lab. Med. 2012; 50(8): 1455-61.
  48. Brody L.C., Conley M., Cox C., Kirke P.N., McKeever M.P., Mills J.L. et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: report of the Birth Defects Research Group. Am. J. Hum. Genet. 2002; 71(5): 1207-15.
  49. De Marco P., Merello E., Calevo M.G., Mascelli S., Raso A., Cama A., Capra V. Evaluation of a methylenetetrahydrofolate-dehydrogenase 1958G>A polymorphism for neural tube defect risk. J. Hum. Genet. 2006; 51(2): 98-103.
  50. Heil S.G., Van der Put N.M., Waas E.T., den Heijer M., Trijbels F.J., Blom H.J. Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects? Mol. Genet. Metab. 2001; 73(2): 164-72.
  51. Marucci G.H., Zampieri B.L., Biselli J.M., Valentin S., Bertollo E.M., Eberlin M.N. et al. Polymorphism C1420T of Serine hydroxymethyltransferase gene on maternal risk for Down syndrome. Mol. Biol. Rep. 2012; 39(3): 2561-6.
  52. Kalmbach R.D., Choumenkovitch S.F., Troen A.P., Jacques P.F., D’Agostino R., Selhub J. A 19-base pair deletion polymorphism in dihydrofolate reductase is associated with increased unmetabolized folic acid in plasma and decreased red blood cell folate. J. Nutr. 2008; 138(12): 2323-7.
  53. Pietrzik K., Bailey L., Shane B. Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2010; 49(8): 535-48.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies