Current assisted reproductive technologies and child and adult health programming


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The periconceptional period in human development is defined as a highly narrow window of time, which covers the preconceptional period and the period of conception to embryo implantation, during which actions on the mother and impregnated ovum are able to affect the further growth and physiological characteristics of progeny. Investigations using human and animal models have shown that in vitro embryo culturing conditions and actions on gametes and embryos may considerably influence an individual’s health in further life. Epigenetic DNA exposures and chromatin organization processes are the most likely mechanisms for the influence of environmental factors and assisted reproductive technologies on further development and phenotype. The long-term effects of modifying periimplantation development conditions on the progeny’s further health are discussed.

Full Text

Restricted Access

About the authors

N. V Bashmakova

Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia; Ural State Medical University, Ministry of Health of Russia

Email: dr@niiomm.ru
MD, ScD, Professor, Director

P. B Tsyvyan

Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia; Ural State Medical University, Ministry of Health of Russia; Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences

Email: pavel.tsyvian@gmail.com
MD, ScD, Professor, Head of Normal Physiology Department

References

  1. Pandey S., Shetty A., Hamilton M., Bhattacharya S., Maheshwary A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Human Reprod.Update, 2012; 18 (5): 485-503.
  2. Barker D.J., Osmond C. Low birth weight and hypertension. Br. Med. J. 1988; 297 (1): 134-135.
  3. Barker D.J., Osmond C., Golding J. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. Br. Med. J. 1989; 298(3): 564-567.
  4. Eriksson J.G., Forsen T., Tuomilehto J. Early growth and coronary heart disease in later life: longitudinal study. Br. Med. J. 2001; 322: 949-953.
  5. Painter R.C., de Rooij S.R., Bossuyt P.M. Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am. J. Clin. Nutr. 2006; 67: 322-27.
  6. Ravelli A.C., van der Meulen J.H., Osmond C. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am. J. Clin. Nutr. 2009; 70: 811-816.
  7. McMillen I.C., Robinson J.S. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev. 2005; 85: 571-633.
  8. Moore V.M., Davies M.J. Diet during pregnancy, neonatal outcomes and later health. Reprod. Fertil. Dev. 2005; 17: 341-348.
  9. Cleal J.K., Poore K.R., Boullin J.P. Mismatched pre- and postnatal nutrition leads to cardiovascular dysfunction and altered renal function in adulthood. Proc. Natl. Acad. Sci. USA. 2007; 104: 9529-9533.
  10. Gluckman P.D., Hanson M.A., Beedle A.S. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am. J. Hum. Biol. 2007; 19: 1-19.
  11. Watkins A.J., Ursell E., Panton R. Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol. Reprod. 2008; 78: 299-306.
  12. Kwong W.Y., Wild A.E., Roberts P. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 2009; 127: 4195-4202.
  13. Bernal A.J., Jirtle R.L. Epigenomic disruption: the effect of early developmental exposures. Birth Defects Res. A Clin. Mol. Teratol. 2010; 88: 938-944.
  14. Kim J.K., Samaranayake M., Pradhan S. Epigenetic mechanisms in mammals. Cell. Mol. Life Sci. 2009; 66: 596-612.
  15. Santos F., Dean W. Epigenetic reprogramming during early development in mammals. Reproduction 2004; 127: 643-651.
  16. Kwong W.Y., Miller D.J., Ursell E. Imprinted gene expression in the rat embryo-fetal axis is altered in response to periconceptional maternal low protein diet. Reproduction 2006; 132: 265-277.
  17. Russell D.F., Baqir S., Bordignon J., Betts D.H. The impact of oocyte maturation media on early bovine embryonic development. Mol. Reprod. Dev. 2006; 73: 1255-1270.
  18. Wakefield S.L., Lane M., Schulz S.J. Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. Am. J. Physiol. Endocrinol. Metab. 2008; 294: E425-434.
  19. Howie G.J., Sloboda D.M., Kamal T. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J. Physiol. 2009; 587: 905-915.
  20. Armstrong D.G., McEvoy T.G., Baxter G. Effect of dietary energy and protein on bovine follicular dynamics and embryo productionin vitro: associations with the ovarian insulin-like growth factor system. Biol. Reprod. 2011; 64: 1624-1632.
  21. Boland M.P., Lonergan P., O’Callaghan D. Effect of nutrition on endocrine parameters, ovarian physiology, and oocyte and embryo development. Theriogenology 2012; 55: 1323-1340.
  22. McEvoy T.G., Robinson J.J., Aitken R.P. Dietary excesses of urea influence the viability and metabolism of preimplantation sheep embryos and may affect fetal growth among survivors. Anim. Reprod. Sci. 2007; 47: 71-90.
  23. Mitchell M., Schulz S.L., Armstrong D.T. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention. Biol. Reprod. 2009; 80: 622-630.
  24. Edwards L.J., McMillen I.C. Periconceptional nutrition programs development of the cardiovascular system in the fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012; 283: R669-R679.
  25. McMillen I.C., MacLaughlin S.M., Muhlhausler B.S. Developmental origins of adult health and disease: the role of periconceptional and foetal nutrition. Basic Clin. Pharmacol. Toxicol. 2008; 102: 82-89.
  26. Fortier A.L., Lopes F.L., Darricarrere N. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum. Mol. Genet. 2008; 17: 1653-1665.
  27. Stouder C., Deutsch S., Paoloni-Giacobino A. Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod. Toxicol. 2009; 28: 536-541.
  28. Polyzos A., Schmid T.E., Pina-Guzman B. Differential sensitivity of male germ cells to mainstream and sidestream tobacco smoke in the mouse. Toxicol. Appl. Pharmacol. 2009; 237: 298-305.
  29. Si W., Men H., Benson J.D., Critser J.K. Osmotic characteristics and fertility of murine spermatozoa collected in different solutions. Reproduction 2009; 137: 215-223.
  30. Watanabe T., Ebara S., Kimura S. Maternal vitamin B12 deficiency affects spermatogenesis at the embryonic and immature stages in rats. Congenit. Anom. 2007; 47: 9-15.
  31. Lonergan P., Khatir H., Piumi F. Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. J. Reprod. Fertil. 2009; 117: 159-167.
  32. Thurston A., Lucas E.S., Allegrucci C. Region-specific DNA methylation in the preimplantation embryo as a target for genomic plasticity. Theriogenology 2007; 68: S98-S106.
  33. Ng R.K., Dean W., Dawson C. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell. Biol. 2008; 10: 1280-1290.
  34. Gardner D.K., Lane M., Stevens J. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil. Steril. 2011; 76: 1175-1180.
  35. Fernandez-Gonzalez R., Moreira P., Bilbao A. Longterm effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc. Natl. Acad. Sci. USA 2004; 101: 5880-5885.
  36. Karagenc L., Lane M., Gardner D.K. Granulocyte-macrophage colony-stimulating factor stimulates mouse blastocyst inner cell mass development only when media lack human serum albumin. Reprod. Biomed. Online 2005; 10: 511-518.
  37. Sjoblom C., Roberts C.T., Wikland M. Granulocyte-macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis. Endocrinology 2005; 146: 2142-2153.
  38. Rizos D., Gutierrez-Adan A., Perez-Garnelo S. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 2006; 68: 236-243.
  39. Mansouri-Attia N., Sandra O., Aubert J. Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl. Acad. Sci. USA 2009; 106: 5687-5692.
  40. Wells D.N., Misica P.M., Tervit H.R. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod. 2009; 60: 996-1005.
  41. Watkins A.J., Platt D., Papenbrock T. Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure. Proc. Natl. Acad. Sci. USA 2007; 104: 5449-5454.
  42. Mahsoudi B., Li A., O’Neill C. Assessment of the long-term and transgenerational consequences of perturbing preimplantation embryo development in mice. Biol. Reprod. 2007; 77: 889-896.
  43. Manipalviratn S., DeCherney A., Segars J. Imprinting disorders and assisted reproductive technology. Fertil. Steril. 2009; 91: 305-315.
  44. Fauser B.C., Devroey P., Macklon N.S. Multiple birth resulting from ovarian stimulation for subfertility treatment. Lancet. 2005; 365: 1807-1816.
  45. Steel A.J., Sutcliffe A. Long-term health implications for children conceived by IVF/ICSI. Hum. Fertil 2009; 12: 21-27.
  46. Helmerhorst F.M., Perquin D.A. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. Br. Med. J. 2004; 328: 261-262.
  47. Koletzko B., Brands B., Chourdakis M. The power of programming and the early nutrition project: opportunities for health promotion by nutrition during the first thousand days of life and beyond. Ann. Nutr. Metab. 2014; 54: 187-196.
  48. Ковтун О.П., Цывьян П.Б. Внутриутробное программирование заболеваний детей и взрослых. Успехи физиологических наук. 2008; 1: 68-75.
  49. Tsyvian P.B., Kovtun O.P., Kovalev V.V. Left ventricular isovolumic relaxation time in human embryo: relationship with cardiac afterload in pre- and postnatal hypertension. J. Developmental Origins of Health and Disease 2011; 2: Suppl.1, PIII-271.
  50. Ковтун О.П., Цывьян П.Б. Перинатальное программирование артериальной гипертензии у ребенка. Вестник РАМН 2013; 6: 34-38.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies