Significance of detoxification system gene polymorphisms in preeclampsia


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To give an update on a relationship between detoxification system gene polymorphisms and the development of preeclampsia. Materials and methods. The available literature sources published in Medline, Pubmed, and other databases, were sought. The authors found 68 sources on a relationship between detoxification gene polymorphisms and the development of preeclampsia, out of which 49 were included in this review. Results. The concept of the role of single nucleotide polymorphisms of the detoxification system in the development of oxidative stress in preeclampsia was set forth. The major detoxification system genes (GSTP1, GSTM1, GSTT1, GPX1, EPHX1, SOD-2, SOD-3, CYP1A1, MTHFR, and MTR) and their functions were given. The most significant gene polymorphisms were revealed in preeclampsia. The data found in the available literature on the relationship between the polymorphisms and the rate of preeclampsia, as well as on the placental expression of these genes in this disease were analyzed. Conclusion. The early diagnosis of preeclampsia has not been fully studied It is necessary to conduct further investigations in this area.

Full Text

Restricted Access

About the authors

Natalia E. Kan

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: kan-med@mail.ru
PhD, MD, the head of the obstetric observation department

Lev A. Bednyagin

M.V. Lomonosov Moscow State University

Email: levbed@mail.ru
student of 2Faculty of Fundamental Medicine

Victor L. Tyutyunnik

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: tioutiounnik@mail.ru
PhD, MD, the head of the obstetric physiological department

Petimat A. Khovkhaeva

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: p_hovhaeva@oparina4.ru
the postgraduate student

Andrey E. Donnikov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_donnikov@oparina4.ru
M.D., Ph.D., Senior Researcher of Molecular-Genetic Laboratory

Nataliya V. Dolgushina

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: n_dolgushina@oparina4.ru
M.D., Ph.D., M.P.H., Head of R&D Department

References

  1. Say L., Chou D., Gemmill A., Tunçalp Ö., Moller A.-B., Daniels J. et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob. Health. 2014; 2(6): e323-33.
  2. Суриков А.Е., ред. Российский статистический ежегодник 2014. М.: Федеральная служба государственной статистики; 2015. 693с. [Surinov A.E., ed. Russian statistics annual 2014. Moscow: Russian Federal State Statistics Service; 2015. 693p. (in Russian)]
  3. Redman C.W., Sargent I.L. Placental stress and pre-eclampsia: a revised view. Placenta. 2009; 30(SupplA): 38-42.
  4. Cronqvist T., Salje K., Familari M., Guller S., Schneider H., Gardiner C. et al. Syncytiotrophoblast vesicles show altered micro-RNA and haemoglobin content after ex-vivo perfusion of placentas with haemoglobin to mimic preeclampsia. PLoS One. 2014; 9(2): e90020.
  5. Hansson S.R., Naav A., Erlandsson L. Oxidative stress in preeclampsia and the role of free fetal hemoglobin. Front. Physiol. 2015; 5: 516.
  6. Walsh S.W. Maternal-placental interactions of oxidative stress and antioxidants in preeclampsia. Semin. Reprod. Endocrinol. 1998; 16(1): 93-104.
  7. The National Center for Biotechnology Information Gene Database. http:// www.ncbi.nlm.nih.gov/gene
  8. OMIM: An Online Catalog of Human Genes and Genetic Disorders. http:// www.omim.org/
  9. Zusterzeel P.L., Peters W.H., Burton G.J., Visser W., Roelofs H.M., Steegers E.A. Susceptibility to pre-eclampsia is associated with multiple genetic polymorphisms in maternal biotransformation enzymes. Gynecol. Obstet. Invest. 2007; 63(4): 209-13.
  10. Canto P., Canto-Cetina T., Juarez-Velazquez R., Rosas-vargas H., Rangel-Villalobos H.H., Canizales-Quinteros S. et al. Methylenetetrahydrofolate reductase C677T and glutathione S-transferase P1 A313G are associated with a reduced risk of preeclampsia in Maya-Mestizo women. Hypertens. Res. 2008; 31(5): 1015-9.
  11. Gebhardt G.S., Peters W.H., Hillermann R., Odendaal H.J., Carelse-Tofa K., Raijmakers M.T., Steegers E.A. Maternal and fetal single nucleotide polymorphisms in the epoxide hydrolase and gluthatione S-transferase P1 genes are not associated with pre-eclampsia in the Coloured population of the Western Cape, South Africa. J. Obstet. Gynaecol. 2004; 24(8): 866-72.
  12. Coral-Vázquez R.M., Romero Arauz J.F., Canizales-Quinteros S., Coronet A., Valencia Villalvazo E.Y., Hernández Rivera J. et al. Analysis of polymorphisms and haplotypes in genes associated with vascular tone, hypertension and oxidative stress in Mexican-Mestizo women with severe preeclampsia. Clin. Biochem. 2013; 46(7-8): 627-32.
  13. Norppa H. Genetic susceptibility, biomarker respones, and cancer. Mutat. Res. 2003; 544(2-3): 339-48.
  14. Sandoval-Carrillo A., Aguilar-Duran M., Vázquez-Alaniz F., Castellanos-Juárez F.X., Barraza-Salas M., Sierra-Campos E. et al. Polymorphisms in the GSTT1 and GSTM1 genes are associated with increased risk of preeclampsia in the Mexican mestizo population. Genet. Mol. Res. 2014; 13(1): 2160-5.
  15. Atalay M.A., Ozerkan K., Karkucak M., Yakut T., Atik Y., Develioglu O.H. Polymorphisms in angiotensin-converting enzyme and glutathione s-transferase genes in Turkish population and risk for preeclampsia. Clin. Exp. Obstet. Gynecol. 2012; 39(4): 466-9.
  16. Cetin M., Pinarbasi E., Percin F.E., Akgun E., Percin S., Pinarbasi H. et al. No association of polymorphisms in the glutathione S-transferase genes with preeclampsia, eclampsia and HELLP syndrome in a Turkish population. J. Obstet. Gynaecol. Res. 2005; 31(3): 236-41.
  17. Kim Y.J., Park H.S., Park M.H., Suh S.H., Pang M.G. Oxidative stress-related gene polymorphism and the risk of preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005; 119(1): 42-6.
  18. Zhang J., Masciocchi M., Lewis D., Sun W., Liu A., Wang Y. Placental anti-oxidant gene polymorphisms, enzyme activity, and oxidative stress in preeclampsia. Placenta. 2008; 29(5): 439-43.
  19. Kim Y.N., Kim H.K., Warda M., Kim N., Park W.S., Prince Adel B. et al. Toward a better understanding of preeclampsia: Comparative proteomic analysis of preeclamptic placentas. Proteomics Clin. Appl. 2007; 1(12): 1625-36.
  20. Mistry H.D., Gill C.A., Kurlak L.O., Seed P.T., Hesketh J.E., Meplan C. et al. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks gestation in nulliparous women who subsequently develop preeclampsia. Free Radic. Biol. Med. 2015; 78: 147-55.
  21. Сухих Г.Т., Красный А.М., Кан Н.Е., Майорова Т.Д., Тютюнник В.Л., Ховхаева П.А., Сергунина О.А., Тютюнник Н.В., Грачева М.И., Вавина О.В., Озернюк Н.Д., Борис Д.А. Апоптоз и экспрессия генов ферментов антиоксидантной защиты в плаценте при преэклампсии. Акушерство и гинекология. 2015; 3: 11-5. [Sukhikh G.T., Krasnyi A.M., Kan N.E., Maiorova T.D., Tyutyunnik V.L., Khovkhaeva P.A., Sergunina O.A., Tyutyunnik N.V., Gracheva M.I., Vavina O.V., Ozernyuk N.D., Boris D.A. Placental apoptosis and antioxidant defense enzyme gene expression in preeclampsia. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2015; 3: 11-5 (in Russian)].
  22. Mistry H.D., Kurlak L.O., Williams P.J., Ramsay M.M., Symonds M.E., Broughton Pipkin F. Differential expression and distribution of placental glutathione peroxidases 1, 3 and 4 in normal and preeclamptic pregnancy. Placenta. 2010; 31(5): 401-8.
  23. Roland-Zejly L., Moisan V., St-Pierre I., Bilodeau J.F. Altered placental glutathione peroxidase mRNA expression in preeclampsia according to the presence or absence of labor. Placenta. 2011; 32(2): 161-7.
  24. Mistry H.D., Wilson V., Ramsay M.M., Symonds M.E., Broughton Pipkin F. Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies. Hypertension. 2008; 52(5): 881-8.
  25. Yan J., Xu X. Relationships between concentrations of free fatty acid in serum and oxidative-damage levels in placental mitochondria and preeclampsia. Zhonghua Fu Chan Ke Za Zhi. 2012; 47(6): 412-7.
  26. Groten T., Schleussner E., Lehmann T., Reister F., Holzer B., Danso K.A., Zeillinger R. eNOSI4 and EPHX1 polymorphisms affect maternal susceptibility to preeclampsia: analysis of five polymorphisms predisposing to cardiovascular disease in 279 Caucasian and 241 African women. Arch. Gynecol. Obstet. 2014; 289(3): 581-93.
  27. Laasanen J., Romppanen E.L., Hiltunen M., Helisalmi S., Mannermaa A., Punnonen K., Heinonen S. Two exonic single nucleotide polymorphisms in the microsomal epoxide hydrolase gene are jointly associated with preeclampsia. Eur. J. Hum. Genet. 2002; 10(9): 569-73.
  28. Pinarbasi E., Percin F.E., Yilmaz M., Akgun E., Cetin M., Cetin A. Association of microsomal epoxide hydrolase gene polymorphism and pre-eclampsia in Turkish women. J. Obstet. Gynaecol. Res. 2007; 33(1): 32-7.
  29. Wang Y., Walsh S.W. Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta. 2001; 22(2-3): 206-12.
  30. Hong Y.C., Lee K.H., Yi C.H., Ha E.H., Christiani D.C. Genetic susceptibility of term pregnant women to oxidative damage. Toxicol. Lett. 2002; 129(3): 255-62.
  31. Procopciuc L.M., Caracostea G., Nemeti G., Drugan C., Olteanu I., Stamatian F. The Ala-9Val (Mn-SOD) and Arg213Gly (EC-SOD) polymorphisms in the pathogenesis of preeclampsia in Romanian women: association with the severity and outcome of preeclampsia. J. Matern. Fetal Neonatal Med. 2012; 25(7): 895-900.
  32. Rosta K., Molvarec A., Enzsoly A., Nagy B., Rónai Z., Fekete A. et al. Association of extracellular superoxide dismutase (SOD3) Ala40Thr gene polymorphism with pre-eclampsia complicated by severe fetal growth restriction. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009; 142(2): 134-8.
  33. Das B., Saha-Roy S., Das Gupta A., Lahiri T.K., Das H.N. Assessment of placental oxidative stress in pre-eclampsia. J. Obstet. Gynaecol. India. 2012; 62(1): 39-42.
  34. Zusterzeel P.L., te Morsche R.H., Raijmakers M.T., Roes E.M., Peters W.H., Steegers-Theunissen R.P., Steegers E.A. N-acetyl-transferase phenotype and risk for preeclampsia. Am. J. Obstet. Gynecol. 2005; 193(3, Pt 1): 797-802.
  35. Jobe S.O., Ramadoss J., Koch J.M., Jiang Y., Zheng J., Magness R.R. Estradiol-17ß and its cytochrome P450-and catechol-O- methyltransferase-derived metabolites stimulate proliferation in uterine artery endothelial cells: role of estrogen receptor-a versus estrogen receptor-ß. Hypertension. 2010; 55(4): 1005-11.
  36. Трифонова Е.А., Габидулина Т.В., Агаркова Т.В., Габитова Н.А., Степанов В.А. Гомоцистеин, полиморфизмы гена МТНРК. и осложнения беременности. Акушерство и гинекология. 2011; 2: 8-15. [Trifonova E.A., Gabidulina T.V., Agarkova T.A., Gabitova N.A., Stepanov V.A. Homocysteine, MTHFR gene polymorphisms, and pregnancy complications. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2011; 2: 8-15 (in Russian)]
  37. Laraqui A., Allami A., Carrie A., Raisonnier A., Coiffard A.S., Benkouka F. et al. Relation between plasma homocysteine, gene polymorphisms of homocysteine metabolism-related enzymes, and angiographically proven coronary artery disease. Eur. J. Intern. Med. 2007; 18(6): 474-83.
  38. Murakami S., Matsubara N., Saitoh M., Miyakaw S., Shoji M., Kubo T. The relation between plasma homocysteine concentration and methylenetetrahydrofolate reductase gene polymorphism in pregnant women. J. Obstet. Gynaecol. Res. 2001; 27(6): 349-52.
  39. Родионов Р.Н., Лентц С.Р. Современные представления о гипергомоцистеинемии как факторе риска сердечно-сосудистых заболеваний. Артериальная гипертензия. 2008; 14(1): 110-5. [Rodionov R.N., Lents S.R. Hyperhomocysteinemia as a cardiovascular risk factor. Current concepts. Arterialnaya gipertenziya. 2008; 14(1): 110-5. (in Russian)]
  40. Wu X., Yang K., Tang X., Sa Y., Zhou R., Liu J. et al. Folate metabolism gene polymorphisms MTHFR C677T and A1298C and risk for preeclampsia: a metaanalysis. J. Assist. Reprod. Genet. 2015; 32(5): 797-805.
  41. Li X., Luo Y.L., Zhang Q.H., Mao C., Wang X.W., Liu S., Chen Q. Methylenetetrahydrofolate reductase gene C677T, A1298C polymorphisms and pre-eclampsia risk: a meta-analysis. Mol. Biol. Rep. 2014; 41(8): 5435-48.
  42. Salimi S., Saravani M., Yaghmaei M., Fazlali Z., Mokhtari M., Naghavi A., Farajian-Mashhadi F. The early-onset preeclampsia is associated with MTHFR and FVL polymorphisms. Arch. Gynecol. Obstet. 2015; 291(6): 1303-12.
  43. Also-Rallo E., Lopez-Quesada E., Urreizti R., Vilaseca M.A., Lailla J.M., Balcells S., Grinberg D. Polymorphisms of genes involved in homocysteine metabolism in preeclampsia and in uncomplicated pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005; 120(1): 45-52.
  44. Perez-Sepulveda A., Espana-Perrot P.P., Fernandez X.B., Ahumada V., Bustos V., Arraztoa J.A. et al. Levels of key enzymes of methionine-homocysteine metabolism in preeclampsia. Biomed. Res. Int. 2013; 2013: 8.
  45. Seremak-Mrozikiewicz A., Bogacz A., Bartkowiak-Wieczorek J., Wolski H., Czerny B., Gorska-Paukszta M., Drews K. The importance of MTHFR, MTR, MTRR and CSE expression levels in Caucasian women with preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015; 188(5): 113-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies