EVALUATION OF THE PSYCHONEUROLOGICAL STATUS OF INFANTS WITH INTRAUTERINE GROWTH RETARDATION IN NEONATOLOGICAL PRACTICE


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Objective. To make a systematic analysis of the data available in the present-day literature on procedures for evaluation of the psychoneurological status of premature infants born with intrauterine growth retardation at birth and over time during the neonatal period. Material and methods. The review included the data of the foreign and Russian articles published in the past 10 years, which had been found in Pubmed on this topic. Results. The data available in the literature on procedures for monitoring the psychoneurological status of premature infants born with intrauterine growth retardation, including rating scales and instrumental examinations, were presented. Conclusion. There is a need for further investigations to optimize an algorithm for diagnostic examination of neonatal infants born with intrauterine growth retardation to reveal neonatal impairments and to timely initiate rehabilitation measures and, if necessary, drug therapy aimed at reducing the incidence of postnatal nervous system lesions.

全文:

受限制的访问

作者简介

Evgenia Kirillova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: evgesha-fs@mail.ru
a graduate student 117997, Russia, Moscow, Ac. Oparina str. 4

Lubov Ushakova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: lv@bk.ru
MD, neurologist Scientific Advisory polyclinic department 117997, Russia, Moscow, Ac. Oparina str. 4

Vladimir Bychenko

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: vbychenko@yandex.ru
Ph D., Head, radiology department 117997, Russia, Moscow, Ac. Oparina str. 4

参考

  1. Levine Т.А., Grunau R.E., McAuliffe ЕМ., Pinnamaneni R., Foran A., Alderdice F.A. Early childhood neurodevelopment after intrauterine growth restriction: a systematic review. Pediatrics. 2015; 135(1): 126-41.
  2. Дементьева Г.М. Дети с задержкой внутриутробного развития. Вопросы охраны материнства и детства. 1978; 4:53-7.
  3. Савельева Г.М., Шалина Р.И., Панина О.Б., Керимова З.М., Калашников С.А. Внутриутробная задержка развития плода. Ведение беременности и родов. Акушерство и гинекология. 1999; 3: 10-5.
  4. DeFelice C., Tassi R., Be Capua B., Jaubert F, Gentile M., Quartulli L. et al. A new phenotypical variant of intrauterine growth restriction? Pediatrics. 2007; 119(4): e983-90.
  5. Batalle D., Munoz-Moreno E., Figueras F, Bargallo N., Eixarch E., Gratacos E. Normalization of similarity-based individual brain networks from gray matter MRI and its association with neurodevelopment in infants with intrauterine growth restriction. Neuroimage. 2013; 83: 901-11.
  6. Cruz-MartinezR., Tenorio V., Padilla N., Crispi F, Figueras F., Gratacos E. Risk of neonatal brain ultrasound abnormalities in intrauterine growth restricted fetuses born between 28 and 34 weeks: relationship with gestational age at birth and fetal Doppler. Ultrasound Obstet. Gynecol. 2015; Jun 4. doi: 10.1002/ uog.14920.
  7. Ballard J.L., Khoury J. C., Wedig K, Wang L., Eilers- Walsman B.L., Lipp R. New Ballard Score, expanded to include extremely premature infants. J. Pediatr. 1991; 119(3): 417-23.
  8. Sasidharan K, Dutta S., NarangA. Validity of New Ballard Score until 7th day of postnatal life in moderately preterm neonates. Arch. Dis. Child. Fetal Neonatal Ed. 2009; 94(1): F39-44.
  9. Frankenburg W.K, Dobbs J.B. The Denver developmental screening test. J. Pediatr. 1967; 71(2): 181-91.
  10. Bayley N. Bayley scales of infant development. New York: The Psychological Corporation; 1969.
  11. Luttikhuizen dos Santos E.S., de Kieviet J.F., Konigs M., van Elburg R.M., Oosterlaan J. Predictive value of the Bayley scales of infant development on development of very preterm/very low birth weight children: a meta-analysis. Early Hum. Dev. 2013; 89(7): 487-96.
  12. Ellison P.H., Horn J.L., Browning C.A. Construction of an Infant neurological International Battery (INFANIB) for the assessment of neurological integrity in infancy. Phys. Ther. 1985; 65: 1326-31.
  13. Griffiths R. Manual: The Griffiths mental development scales from birth to 2 years. UK: Association for Research in Infant and Child Development; 1996 Revision.
  14. Gladstone M.J., Lancaster G.A., UmarE., Nyirenda M., Kayira E., BroekN.R., et al. The Malawi Developmental Assessment Tool (MDAT): the creation, validation, and reliability of a tool to assess child development in rural African settings. PLoS Med. 2010; 7(5): ЄІ000273.
  15. Khan N.Z., Muslima H., Begum D., Shilpi A.B., Akhter S., Bilkis К et al. Validation of rapid neurodevelopmental assessment instrument for under-two- year-old children in Bangladesh. Pediatrics. 2010; 125(4): e755-62.
  16. Wickremasinghe A.C., Hartman T.K., Voigt R.G., Katusic S.K., Weaver A.L., Colby C.E., Barbaresi W.J. Evaluation of the ability of neurobiological, neurodevelopmental and socio-economic variables to predict cognitive outcome in premature infants. Child Care Health Dev. 2011; 38(5): 683-9.
  17. de Vries L.S., Benders M.J., Groenendaal F. Imaging the premature brain: ultrasound or MRI? Neuroradiology. 2013; 55(Suppl. 2): 13-22.
  18. Deoni S.C.L., Mercure E., Blast A., Gasston D., Thomson A., Johnson M. al. Mapping infant brain myelination with magnetic resonance imaging. J. Neurosci. 2011; 31(2): 784-91.
  19. CsutakR., Unterassinger L., Rohrmeister C, Weninger M., Vergesslich K.A. Three- dimensional volume measurement of the lateral ventricles in preterm and term infants: evaluation of a standardised computer-assisted method in vivo. Pediatr. Radiol. 2003; 33(2): 104-9.
  20. Pistorius L.R., Stoutenbeek P, Groenendaal F, De Vries L., Manten G., MulderE. et al. Grade and symmetry of normal fetal cortical development: a longitudinal two- and three-dimensional ultrasound study. Ultrasound Obstet. Gynecol. 2010; 36(6): 700-8.
  21. Klebermass-Schrehofl K., Moerth S., Vergesslich-Rothschild K, Fuiko R., Brandstetter S., Літа В. et al. Regional cortical development in very low birth weight infants with normal neurodevelopmental outcome assessed by 3D-ultrasound. J. Perinatol. 2013; 33(7): 533-7.
  22. Plaisier A., Raets M.M., Ecury-Goossen G.M., Govaert P, Feijen- Roon M., Reiss I.К et al. Serial cranial ultrasonography or early MRI for detecting preterm brain injury? Arch. Dis. Child. Fetal Neonatal Ed. 2015; 100(4): F293-300. doi: 10.1136/archdischild-2014-306129.
  23. Sarikaya B. , McKinney A.M., Spilseth B., Truwit C.L. Comparison of spin- echo Tl- and T2-weighted and gradient-echo T1-weighted images at 3T in evaluating very preterm neonates at term-equivalent age. AJNR Am. J. Neuroradiol. 2013; 34(5): 1098-103. doi: 10.3174/ajnr.A3323.
  24. Shim S.Y., Jeong H.J., Son D.W., Chung M., Park S., Cho Z.H. Serial diffusion tensor images during infancy and their relationship to neuromotor outcomes in preterm infants. Neonatology. 2014; 106(4): 348-54.
  25. Thompson D.K, Inder T.E., Faggian N., WarfieldS.K., Anderson P.J., Doyle L. W., Egan G.F Corpus callosum alterations in very preterm infants: perinatal correlates and 2-year neurodevelopmental outcomes. Neuroimage. 2012; 59(4): 3571-81.
  26. Volpe J.J., Kinney H.C., Jensen F.E., Rosenberg PA. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int. J. Dev. Neurosci. 2011 29(4): 423-40.
  27. Wisnowski J.L., Blum S., Paquette L., ZelinskiE., Nelson M.D., Painter M.J. et al. Altered glutamatergic metabolism associated with punctate white matter lesions in preterm infants. PLoS One. 2013; 8(2): e56880.
  28. Counsell S.J., Shen Y., Boardman J.P., Larkman D.J., Kapellou 0., Ward P et al. Axial and radial difTusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics. 2006; 117(2): 376-86.
  29. Jeon T. Y., Kim J.H., Yoo S. Y., Eo H., Kwon J.-Y., Lee J. et al. Neurodevelopmental outcomes in preterm infants: comparison of infants with and without diffuse excessive high signal intensity on MR images at near-term-equivalent age. Radiology. 2012; 263(2): 518-26.
  30. Calloni S.F., Cinnante C.M., Bassi L., Avignone S., Fumagalli M., Bonello L. et al. Neurodevelopmental outcome at 36 months in very low birth weight premature infants with MR diffuse excessive high signal intensity (DEHSI) of cerebral white matter. Radiol. Med. 2015; 120(11): 1056-63.
  31. Xu D., Bonifacio S.L., Charlton N.N., Vaughan C.P., Lu Y., Ferriero D.M. et al. Spectroscopy of normative premature newborns. Magn. Reson. Imaging. 2011; 33(2): 306-11. doi: 10.1002/jmri.22460.
  32. Yerushalmy-Fel A., Marom R., Peylan T, Korn A., Haham A., Mandel D. et al. Electroencephalographic characteristics in preterm infants bom with intrauterine growth restriction. J. Pediatr. 2014; 164(4): 756-61.
  33. Viniker D.A., Maynard D.E., Scott D.F. Cerebral function monitor studies in neonates. Clin. Electroenceph. 1984; 15: 185-92.
  34. Klebermass K, Olischar M., Waldhoer T, Fuiko R., Poliak A., Weninger M. Amplitude-integrated EEG pattern predicts further outcome in preterm infants. Pediatr. Res. 2011; 70(1): 102-8.
  35. Welch C., Helderman J., Williamson E., O’Shea T.M. Brain wave maturation and neurodevelopmental outcome in extremely low gestational age neonates. I. Perinatol. 2013; 33(11): 867-71. doi: 10.1038/jp.2013.79.
  36. Vesoulis Z.A., Paul R.A., Mitchell T.J., Wong C, Inder T.E., Mathur A.M. Normative amplitude-integrated EEG measures in preterm infants. J. Perinatol. 2015; 35(6): 428-33. doi: 10.1038/jp.2014.225.
  37. Hellstrom-Westas L., de Vries L.S., Rosen I. An atlas of amplitude-integrated EEGs in the newborn. London: Parthenon Publ; 2003.
  38. Hellstrom-Westas L., Rosen I., de Vries L.S., Greisen G. Amplitude-integrated EEG classification and interpretation in preterm and term infants. NeoReviews. 2006; 7(2): e76-87.
  39. Ушакова Л.В., Амирханова Д.Ю., Boone Т. Классификация паттернов фоновой активности и их клиническое значение. В кн.: Дегтярев Д.Н., Ионов О.В., ред. Амплитудно-интегрированная электроэнцефалография и селективная церебральная гипотермия в неонатологической практике. М.: Паблис; 2013: 24-30
  40. Benavente-Ferndndez I., Lubidn-Ldpez S.P., Jimdnez,-Gomez G., Lechuga- Sancho A.M., Garcia-Allozp M. Low-voltage pattern and absence of sleep-wake cycles are associated with severe hemorrhage and death in very preterm infants. Eur. J. Pediatr. 2015; 174(1): 85-90. doi: 10.1007/s00431 -014-2360-0.
  41. Мухин К.Ю., Петрухин А. С., Глухова Л.Ю. Эпилепсия. Атлас электро- клинической диагностики. М.: «Альварес Паблишинг»; 2004: 106-13.
  42. Pike A., Marlow N. The role of cortical evoked responses in predicting neuromotor outcome in very preterm infants. Early Hum. Dev. 2000; 57(2): 123-35.
  43. Kontio T, Toet M.C., Bells trom-Wes tas L., van Handel M., Groenendaal F, Stjerna S. et al. Early neurophysiology and MRI in predicting neurological outcome at 9-10 years after birth asphyxia. Clin. Neurophysiol. 2013; 124(6): 1089-94.
  44. Nevalainen P, Rahkonen P, Pihko E., Lano A., Vanhatalo S., Andersson S. et al. Evaluation of somatosensory cortical processing in extremely preterm infants at term with MEG and EEG. Clin. Neurophysiol. 2015; 126(2):275-83. doi: 10.1016/j.clinph.2014.05.036.
  45. Шишкинская E.B., Беляева И.А., Бомбардирова Е.П., Семенова Н.Ю. Нарушения слуха у новорожденных с перинатальными поражениями центральной нервной системы. Вопросы современной педиатрии. 2012; 11(3): 90-3.
  46. Колкер И.А. Зрительные вызванные потенциалы в неврологии. Международный неврологический журнал. 2006; 5(9).
  47. Ellingson R.J. Development of visual evoked potentials and photic driving responses in normal full term, low risk premature and trisomy-21 infants during the first year of life. Electroencephalogr. Clin. Neurophysiol. 1986; 63(4): 309-16.
  48. Apkarian P, Mirmiran M., Tijssen R. Effects of behavioural state on visual processing in neonates. Neuropediatrics. 1991; 22(2): 85-91.
  49. Thordstein C.M., Sultan B.L., Wennergren M.M., Tomqvist E., Lindecrantz KG., Kjellmer I. Visual evoked potentials in disproportionately growth-retarded human neonates. Pediatr. Neurol. 2004; 30(4): 262-70.
  50. Kohelet D., Arbel E., Goldberg M., Arlazzoroff A. Intrauterine growth retardation and brainstem auditory-evoked response in preterm infants. Acta Paediatr. 2000; 89(1): 73-6.

补充文件

附件文件
动作
1. JATS XML
##common.cookie##