Cell metabolic reprogramming as a factor for induction and progression of cervical precancer and cancer


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To carry out a systematic analysis of the data available in the modern literature on metabolic reprogramming of tumor cells and to search for clin ical and molecular markers for early diagnosis and prognosis of cervical precancer and cancer. Subject and methods. The review included the data of foreign and Russian papers published in the past 10 years and found in Pubmed on this topic. Results. The cell metabolic reprogramming mechanism and its role in the progression and regression of cervical precancer and cancer were described. The markers for their early diagnosis were identified. Conclusion. There is a need for further investigations of the role of cell metabolic reprogramming and its impact on the induction and progression of cervical precancer and cancer in order to develop early diagnostic techniques and to search for markers determ ining the prognosis of the disease.

Full Text

Restricted Access

About the authors

Yulia S. Khlebkova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: y_khlebkova@oparina4.ru
postgraduate

Mikhail Yu. Vysokikh

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: m_vysokikh@oparina4.ru
PhD, Head of mitochondrial medicine research group

Elena A. Mezhevitinova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: Mejevitinova@mail.ru
MD

Polina A. Vishnyakova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: p_vishnyakova@oparina4.ru
researcher at the Laboratory of mitochondrial medicine

Vera N. Prilepskaya

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: v_prilepskaya@oparina4.ru
MD, Professor

Gennady T. Sukhikh

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: g_sukhikh@oparina4.ru
PhD, MD, professor, academician of RAS, Director

References

  1. Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015; 65(2): 87-108. doi: 10.3322/caac.21262.
  2. Каприн А.Д., Старинский В.В., Петрова Г.В., ред. Злокачественные новообразования в России в 2013 году. М.: ФГБУ «МНИОИ им. П.А. Герцена» Минздрава России; 2015. 250с. [Kaprin A.D., Starinskiy V.V., Petrova G.V., eds. Malignancies in Russia in 2013. Moscow: FGBI „MNIOI them. PA Herzen „Russian Ministry of Health; 2015. 250p. (in Russian)]
  3. Reagan J.W., Hamonic M.J. Dysplasia of the uterine cervix. Ann. N. Y. Acad. Sci. 1956; 63(6): 1236-44.
  4. Richard R.M. Cervical intraepithelial neoplasia. Pathol. Annu. 1973; 8: 301-28.
  5. Сухих Г.Т., Прилепская В.Н., ред. Профилактика рака шейки матки. Руководство для врачей. 3-е изд. М.: МЕДпресс-информ; 2012. 192с. [Sukhikh G.T., Prilepskaya V.N., ed. Prevention of cervical cancer. Guidelines for doctors. 3rd ed. Moscow: MEDpress-inform; 2012. 192p. (in Russian)]
  6. Kroemer G. Mitochondria in cancer. Oncogene. 2006; 25(34): 4630-2.
  7. Vallejo C.G., Cruz-Bermudez A., Clemente P., Herndndez-Sierra R., Garesse R., Quintanilla M. Evaluation of mitochondrial function and metabolic reprogramming during tumor progression in a cell model of skin carcinogenesis. Biochimie. 2013; 95(6): 1171-6.
  8. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-74.
  9. Macheda M.L., Rogers S., Best J.D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell. Physiol. 2005; 202(3): 654-62.
  10. Svensson R.U., Shaw R.J. Cancer metabolism: Tumour friend or foe. Nature. 2012; 485(400): 590-1.
  11. Nelson D.L., Cox M.M. Lehninger principles of biochemistry. 5-th ed. W.H. Freeman and Company; 2008. 1294p.
  12. Warburg O., Wind F., Negelein E. The metabolism of tumors in the body. J. Gen. Physiol. 1927; 8(6): 519-30.
  13. Warburg O. On the origin of cancer cells. Science. 1956; 123: 309-14.
  14. Pouysségur J., Dayan F., Mazure N.M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006; 441(7092): 437-43.
  15. Semenza G.L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010; 29(5): 625-34.
  16. Bertout J.A., Patel S.A., Simon M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer. 2008; 8(12): 967-75.
  17. Liao D., Corle C., Seagroves T.N., Johnson R.S. Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res. 2007; 67(2): 563-72.
  18. Generali D., Berruti A., Brizzi M.P., Campo L., Bonardi S., Wigfield S. et al. Hypoxia-inducible factor-1 alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin. Cancer Res. 2006; 12(15): 4562-8.
  19. Rundqvist H., Johnson R.S. Tumour oxygenation: implications for breast cancer prognosis. J. Intern. Med. 2013; 274(2): 105-12.
  20. Dales J.P., Garcia S., Meunier-Carpentier S., Andrac-Meyer L., Haddad O., Lavaut M.N. et al. Overexpression of hypoxia-inducible factor HIF-1 alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. Int. J. Cancer. 2005; 116(5): 734-9.
  21. Tang X., Zhang Q., Nishitani J., Brown J., Shi S., Le A.D. Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 alpha protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin. Cancer Res. 2007; 13(9): 2568-76.
  22. Mayer A., Höckel M., Vaupel P. Endogenous hypoxia markers in locally advanced cancers of the uterine cervix: reality or wishful thinking? Strahlenther. Onkol. 2006; 182(9): 501-10.
  23. Brahimi-Horn M.C., Chiche J., Pouysségur J. Hypoxia and cancer. J. Mol. Med. (Berl.). 2007; 85(12): 1301-7.
  24. Zhao T., Zhang C.P., Liu Z.H., Wu L.Y., Huang X., Wu H.T. et al. Hypoxia-driven proliferation of embryonic neural stem/progenitor cell-role of hypoxia-inducible transcription factor -1 alpha. FEBS J. 2008; 275(8): 1824-43.
  25. Lee S.H., Lee M.Y., Han H.J. Short-period hypoxia increases mouse embryonic stem cell proliferation through cooperation of aracgidonic acid PI3/Akt signaling pathways. Cell Prolif. 2008; 41(2): 230-47.
  26. Luo X.M., Zhou S.H., Fan J. Glucose transporter-1 as a new therapeutic target in laryngeal carcinoma. J. Int. Med. Res. 2010; 38(6): 1885-92.
  27. Carvalho K.C., Cunha I.W., Rocha R.M., Ayala F.R., Cajaiba M.M., Begnami M.D. et al. GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics (Sao Paulo). 2011; 66(6): 965-72.
  28. Airley R., Loncaster J., Davidson S., Bromley M., Roberts S., Patterson A. et al. Glucose transporter Glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin. Cancer Res. 2001; 7(4): 928-34.
  29. Markowska J., Grabowski J.P., Tomaszewska K., Kojs Z., Pudelek J., Skrzypczak M. et al. Significance of hypoxia in uterine cervical cancer. Multicentre study. Eur. J. Gynaecol. Oncol. 2007; 28(5): 386-8.
  30. Hoskin P.J., Sibtain A., Daley F.M., Wilson G.D. GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON. Br. J. Cancer. 2003; 89(7): 1290-7.
  31. Airley R.E., Loncaster J., Raleigh J.A., Harris A.L., Davidson S.E., Hunter R.D. et al. GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int. J. Cancer. 2003; 104(1): 85-91.
  32. Hedley D., Pintilie M., Woo J., Morrison A., Birle D., Fyles A. et al. Carbonic anhydrase IX expression, hypoxia, and prognosis in patients with uterine cervical carcinomas. Clin. Cancer Res. 2003; 9(15): 5666-74.
  33. Mayer A., Wree A., Höckel M., Leo C., Pilch H., Vaupel P. Lack of correlation between expression of HIF- 1a protein and oxygenation status in identical tissue areas of squamous cell carcinomas of the uterine cervix. Cancer Res. 2004; 64(16): 5876-81.
  34. Huang X.Q., Chen X., Xie X.X., Zhou Q., Li K., Li S. et al. Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosis in cervical squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2014; 7(4): 1651-66.
  35. Suh D.H., Kim M.A., Kim H., Kim M.K., Kim H.S., Chung H.H. et al. Association of overexpression of hexokinase II with chemoresistance in epithelial ovarian cancer. Clin. Exp. Med. 2014; 14(3): 345-53.
  36. Pedersen P.L., Mathupala S., Rempel A., Geschwind J.F., Ko Y.H. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim. Biophys. Acta. 2002; 1555(1-3): 14-20.
  37. Rho M., Perazella M.A. Nephrotoxicity associated with antiretroviral therapy in HIV-infected patients. Curr. Drug Saf. 2007; 2(2): 147-54.
  38. Wolf A., Agnihotri S., Micallef J., Mukherjee J., Sabha N., Cairns R. et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 2011; 208(2): 313-26.
  39. Kwee S.A., Hernandez B., Chan O., Wong L. Choline kinase alpha and hexokinase-2 protein expression in hepatocellular carcinoma: association with survival. PLoS One. 2012; 7(10): e46591.
  40. Yoshino H., Enokida H., Itesako T., Kojima S., Kinoshita T., Tatarano S. et al. The tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in renal cell carcinoma. Cancer Sci. 2013; 104(12): 1567-74.
  41. Palmieri D., Fitzgerald D., Shreeve S.M., Hua E., Bronder J.L., Weil R.J. et al. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol. Cancer Res. 2009; 7(9): 1438-45.
  42. Min J.W., Kim K.I., Kim H.A., Kim E.K., Noh W.C., Jeon H.B. et al. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells. Biochem. Biophys. Res. Commun. 2013; 440(1): 137-42.
  43. Guo-Qing P., Yuan Y., Cai-Gao Z., Hongling Y., Gonghua H., Yan T. A study of association between expression of hOGG1, VDAC1, HK-2 and cervical carcinoma. J. Exp. Clin. Cancer Res. 2010; 29(1): 129.
  44. Хлебкова Ю.С., Вишнякова П.А., Погосян Ш.М., Высоких М.Ю., Межевитинова Е.А., Прилепская В.Н. Тактика ведения пациенток с цервикальными интраэпителиальными неоплазиями. Акушерство и гинекология. 2015; 11: 65-9. [Khlebkova Yu.S., Vishnyakova P.A., Pogosyan Sh.M., Vysokikh M.Yu., Mezhevitinova E.A., Prilepskaya V.N. Management tactics for patients with cervical intraepithelial neoplasia. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2015; 11: 65-9. (in Russian)]
  45. Pastorino J. G., Hoek J.B. Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr. Med. Chem. 2003; 10(16): 1535-51.
  46. Mathupala S.P., Ko Y.H., Pedersen P.L. Hexokinase II: cancer’s doubleedged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene. 2006; 25(34): 4777-86.
  47. Vousden K.H., Lu X. Live or let die: the cell’s response to p53. Nat. Rev. Cancer. 2002; 2(8): 594-604.
  48. Cosentino K., García-Sáez A.J. Mitochondrial alterations in apoptosis. Chem. Phys. Lipids. 2014; 181: 62-75.
  49. Gross A., McDonnell J.M., Korsmeyer S.J. Bcl-2 family members and the mithochondria in apoptosis. Genes Dev. 1999; 13: 1899-911.
  50. Sun L., Shukair S., Naik T.J., Moazed F., Ardehali H. Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol. Cell. Biol. 2008; 28(3): 1007-17.
  51. Pastorino J.G., Shulga N., Hoek J.B. Mitochondrial binding of hexokinase II inhibits Bax induced cytochrome c release and apoptosis. J. Biol. Chem. 2002; 277(9): 7610-8.
  52. Yoo H.J., Yun B.R., Kwon J.H., Ahn H.S., Seol M.A., Lee M.J. et al. Genetic and expression alterations in association with the sarcomatous change of cholangiocarcinoma cells. Exp. Mol. Med. 2009; 41(2): 102-15.
  53. Bai Z., Ye Y., Liang B., Feng X., Zhang H., Zhang Y. et al. Proteomics-based identification of a group of apoptosis-related proteins and biomarkers in gastric cancer. Int. J. Oncol. 2011; 38(2): 375-83.
  54. Pernemalm M., De Petris L., Branca R., Forshed J., Kanter L., Soria J. et al. Quantitative proteomics profiling of primary lung adenocarcinoma tumors reveals functional perturbations in tumor metabolism. J. Proteome Res. 2013; 12(9): 3934-43.
  55. Advani P.P., Paulus A., Masood A., Sher T., Chanan-Khan A. Pharmacokinetic evaluation of oblimersen sodium for the treatment of chronic lymphocytic leukemia. Expert Opin. Drug Metab. Toxicol. 2011; 7(6): 765-74.
  56. Гуськов Е.П., Шкурат Т.П., Вардуни Т.В., Машкина Е.В., Покудина И.О., Шиманская Е.И., Гуськов Г.Е., Беличенко Н.И., Александрова А.А. Генетика окислительного стресса. Монография. Ростов н/Д: СКНЦ ВЩ ЮФУ; 2009. 156с. [Guskov E.P., Shkurat T.P., Varduni T.V., Mashkina E.V., Pokudina I.O., Shimanskaya E.I., Guskov G.E., Belichenko N.I., Aleksandrova A.A. Genetics oxidative stress. Monograph. Rostov on Don: SKNTs VSch YuFU; 2009. 156p. (in Russian)]
  57. Мансурова Г.Н., Иванина П.В., Литвяков Н.В., Васильева Е.О., Скобельская Е.В., Карпов А.Б., Тахауов P.M. Хромосомные аберрации и полиморфизм генов эксцизионной репарации у работников СХК с онкологическими заболеваниями. Сибирский онкологический журнал. 2008; Приложение 1: 84-5. [Mansurova G.N., Ivanina P.V., Litvyakov N.V., Vasileva E.O., Skobelskaya E.V., Karpov A.B., Tahauov P.M. Chromosomal aberrations and gene polymorphism excision repair in SCC employees with cancer. Sibirskiy onkologicheskiy zhurnal. 2008; Suppl. 1: 84-5. (in Russian)]
  58. Журавлёва Ю.А., Минина В.И., Титов Р.А., Титов В.А., Вержбицкая Н.Е. Полиморфизм генов ферментов репарации ДНК у больных раком лёгкого. Сибирский онкологический журнал. 2012; Приложение 1: 68. [Zhuravlyova Yu.A., Minina V.I., Titov R.A., Titov V.A., Verzhbitskaya N.E. Polymorphism of genes of DNA repair enzymes in patients with lung cancer. Sibirskiy onkologicheskiy zhurnal. 2012; Suppl. 1: 68. (in Russian)]
  59. El-Wassef M., El-Saeed G.S.M., El-Tokhy S.E., Raslan H.M., Tawfeek S., Siam I., Salem S.I. Oxidative DNA damage in patients with type 2 diabetes mellitus. Diabetol. Croat. 2012; 41(4): 121-7.
  60. Степанов В.А. Геномы, популяции, болезни: этническая геномика и персонифицированная медицина. Acta Naturae. 2010: 2(4): 18-34. [Stepanov V.A. Genomes, population, disease: ethnicity genomics and personalized medicine. Acta Naturae. 2010: 2 (4): 18-34. (in Russian)]
  61. Weiss J.M., Goode E.L., Ladiges W.C., Ulrich C.M. Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Mol. Carcinog. 2005; 42(3): 127-41.
  62. Wang S., Wu J., Hu L., Ding C., Kan Y., Shen Y. et al. Common genetic variants in TERT contribute to risk of cervical cancer in a Chinese population. Mol. Carcinog. 2012; 51(Suppl.1): E118-22.
  63. Osterhage J.L., Friedman K.L. Chromosome end maintenance by telom-erase. J. Biol. Chem. 2009; 284(24): 16061-5.
  64. Lee H.C., Wei Y.H. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp. Biol. Med. (Maywood). 2007; 232(5): 592-606.
  65. Verdun R.E., Crabbe L., Haggblom C., Karlseder J. Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol. Cell. 2005; 20(4): 551-61.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies