Impact of prenatal exposure to benz[a]pyrene, styrene, and formaldehyde on birth weight in relation to detoxification system gene


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To reveal an association between prenatal exposure to benz[a]pyrene, styrene, formaldehyde, maternal genotype, and infant birth weight. Subjects and methods. The population-based cross-sectional study recruited 166 puerperas randomly selected from a population of pregnant women who had admitted to Chita maternal hospitals and given birth to a baby at more than 35 weeks’ gestation. The inclusion criteria were their age of 20 to 40 years and at least 5-year residence in Chita. Women with fetal malformations and multiple pregnancy were excluded. The levels of benz[a]pyrene and formaldehyde in serum from puerperas and in umbilical cord blood from newborns were determined using high performance liquid chromatography, the content of styrene was estimated by gas chromatography. Detoxification genotypes were defined by real-time PCR. Results. There was a significant inverse correlation between neonatal weight and the level of benz[a]pyrene, styrene, and formaldehyde in the maternal blood and that of benz[a]pyrene and styrene in the neonatal blood. The neonatal weight was higher with the lower levels of benz[a]pyrene in the maternal blood and in the neonatal umbilical cord blood provided that there was GSTP1A allele c.313 A>G, SULT1A1 G allele c. 404 G>A, CYP1A1 T allele c. 1189 T>C, and MTR A allele c. 2756A>G. Weight was also related to the content of styrene and was significantly lower in the presence of CYP1A1 C allele c. 1189 T>C, MTHFR allele T c. 677 C>T, and MRT G allele c. 2756 A>G. In case of higher formaldehyde levels, the neonatal weight was considerably lower in the presence of NAT2 C allele c. 341 T>C. Conclusion. Our findings suggest that the allelic status of the genes of the xenobiotic transformation system (GSTP1 c.313 A>G, EPHX1 c.337 T>C, NAT2c.341 T>C, SULT1A1 c.404 G>A, and CYP1A1 c.1189 T>C), antioxidant defense (GPX1 c.599 C>T), and folate metabolism (MTHFR c.677 C>Tand MTR c.2756A>G) in the development of fetal growth retardation. On entering the body, polycyclic aromatic hydrocarbons are first activated with cytochrome enzymes, CYP1A1 in particular, and then inactivated with glutathione transferases, GSTM1 and GSTP1 in particular. The combination of highly active CYP1A1 genotype with defective GST types may substantially increase the risk of birth of low birthweight babies.

Full Text

Restricted Access

About the authors

Elena Victorovna Kazantseva

Chita State Medical Academy

Email: kalevi@yandex.ru
M.D., Ph.D., Associate Professor of the Department of Obstetrics and Gynecology

Nataliya Vitalievna Dolgushina

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: n_dolgushina@oparina4.ru
M.D., Ph.D., M.P.H., Head of R&D Department

Andrey Evgenievich Donnikov

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_donnikov@oparina4.ru
M.D., Ph.D., Senior Researcher of Molecular-Genetic Laboratory

Lev Alexandrovich Bednyagin

M. Yu. Lomonosov Moscow State University

Email: levbed@mail.ru
student of the department of fundamental medicine

Elena Eugenievna Baranova

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: baranova.gen@gmail.com
M.D., Laboratory of Reproductive Genetics

Pavel Petrovich Tereshkov

Chita State Medical Academy

Email: tpp69l5@mail.ru
PhD

References

  1. Стратегия национальной безопасности Российской Федерации до 2020 года. Available at: http://www.scrf.gov.ru/documents/99.html [The National Security Strategy of the Russian Federation until 2020. Available at: http://www. scrf.gov.ru/documents/99.html (in Russian)]
  2. Казанцева Е.В., Долгушина Н.В., Ильченко И.Н. Влияние антропогенных химических веществ на течение беременности. Акушерство и гинекология. 2013; 2: 18-23. [Kazantseva E.V., Dolgushina N.V., Ilchenko I.N. Effect of anthropogenic chemicals on the course of pregnancy. Akusherstvo i ginekologiya/Obstetrics and gynecology. 2013; 2: 18-23. (in Russian)]
  3. Носкова И.Н., Тришкин А.Г., Артымук Н.В. Анализ перинатальных потерь в Кемеровской области. Журнал акушерства и женских болезней. 2011; 60(2): 103-9. [Noskova I.N., Trishkin A.G., Artyimuk N.V. Analysis of perinatal losses in the Kemerovo region. Zhurnal akusherstva i zhenskih bolezney. 2011; 60(2): 103-9. (in Russian)]
  4. Верзилина И.Н., Чурносов М.И., Пахомов С.П. Анализ структуры и динамики гинекологической заболеваемости взрослого женского населения в Белгородской области. Акушерство и гинекология. 2011; 5: 74-7. [Verzilina I.N., Churnosov M.I., Pakhomov S.P. Analysis of the structure and trend of gynecological morbidity in the adult female population of the Belgorod Region. Akusherstvo i ginekologiya/Obstetrics and gynecology. 2011; 5: 74-7. (in Russian)]
  5. Землянова М.А., Кольдибекова Ю.В. Современные подходы к оценке нарушений метаболизма ксенобиотиков при поступлении в организм из внешней среды. Экология человека. 2012; 8: 8-14. [Zemlyanova M.A., Koldibekova Yu.V. Current approaches to assessing breaches of xenobiotic metabolism when the body from the external environment. Ekologiya cheloveka. 2012; 8: 8-14. (in Russian)]
  6. Казанцева Е.В., Долгушина Н.В., Донников А.Е., Баранова Е.Е., Пивоварова Л.В. Малая масса новорожденных: сочетанное влияние полиморфизма генов глутатион-S-трансферазу (GST) и пренатальной экспозиции к кадмию и свинцу. Акушерство и гинекология. 2014; 10: 72-80. [Kazantseva E.V., Dolgushina N.V., Donnikov A.E., Baranova E.E., Pivovarova L.V. Newborn low birth weight: Combined impact of glutathione-S-transferase gene polymorphisms and prenatal exposure to cadmium and lead. Akusherstvo i ginekologiya/Obstetrics and gynecology. 2014; 10: 72-80. (in Russian)]
  7. Беспалова О.Н., Иващенко Т.Э., Тарасенко О.А., Малышева О.В., Баранов В.С., Айламазян Э.К. Плацентарная недостаточность и полиморфизм генов глутатион-S-трансфераз М1, Т1 и Р1. Журнал акушерства и женских болезней. 2006; 55(2): 25-31. [Bespalova O.N., Ivaschenko T.E., Tarasenko O.A., Malyisheva O.V., Baranov V.S., Aylamazyan E.K. Placental insufficiency and gene polymorphisms of glutathione transferases-S-M1, T1 and P1. Zhurnal akusherstva i zhenskih bolezney. 2006; 55(2): 25-31. (in Russian)]
  8. Онищенко Г.Г. Санитарно-эпидемиологические проблемы обращения с отходами производства и потребления в Российской Федерации. Гигиена и санитария. 2009; 3: 8-16. [Onischenko G.G. Sanitary problems of waste production and consumption in the Russian Federation. Gigiena i sanitariya. 2009; 3: 8-16. (in Russian)]
  9. Брагина Е.Ю., Фрейдин М.Б., Тен И.А., Огородова Л.М. Полиморфизм генов ферментов биотрансформации ксенобиотиков GSTT1, GSTM1, CYP2E1 и CYP2C19 у больных бронхиальной астмой. Бюллетень Сибирского отделения Российской академии медицинских наук. 2005; 3: 128-32. [Bragina E.Yu., Freydin M.B., Ten I.A., Ogorodova L.M. Polymorphism of genes of enzymes of biotransformation of xenobiotics GSTT1, GSTM1, CYP2E1 and CYP2C19 in patients with bronchial asthma. Byulleten Sibirskogo otdeleniya Rossiyskoy akademii meditsinskih nauk. 2005; 3: 128-32. (in Russian)]
  10. Жарин В.А. Полиморфизм генов биотрансформации ксенобиотиков. Военная медицина. 2013; 3: 122-4. [Zharin V.A. Polymorphism of genes of biotransformation of xenobiotics. Voennaya meditsina. 2013; 3: 122-4. (in Russian)]
  11. Спицын В.А. Экологическая генетика человека. М.: Наука; 2008. 327с. [Spitsyin V.A. Environmental human genetics. Moscow: Nauka; 2008. 327p. (in Russian)]
  12. van Schooten F.J., Moonen E.J., van der Wal L., Levels P., Kleinjans J.C. Determination of polycyclic aromatic hydrocarbons (pah) and their metabolites in blood, feces, and urine of rats orally exposed to PAH contaminated soils. Arch. Environ. Contam. Toxicol. 1997; 33(3): 317-22. (in Russian)]
  13. Tornero-Velez R., Waidyanatha S., Pérez H.L., Osterman-Golkar S., Echeverria D., Rappaport S.M. Determination of styrene and styrene-7,8-oxide in human blood by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 2001; 757(1): 59-68.
  14. McCarty K.M., Santella R.M., Steck S.E., Cleveland R.J., Ahn J., Ambrosone C.B. et al. PAH-DNA adducts, cigarette smoking, GST polymorphisms, and breast cancer risk. Environ. Health Perspect. 2009; 117(4): 552-8.
  15. Hatagima A. Genetic polymorphisms and metabolism of endocrine disruptors in cancer susceptibility. Cad. Saude Publica. 2002; 18(2): 357-77.
  16. Crowell S.R., Hanson-Drury S., Williams D.E., Corley R.A. In vitro metabolism of benzo [a]pyrene and dibenzo [def,p]chrysene in rodent and human hepatic microsomes. Toxicol. Lett. 2014; 228(1): 48-55.
  17. Rihs H.P., Pesch B., Kappler M., Rabstein S., Rossbach B., Angerer J. et al. Occupational exposure to polycyclic aromatic hydrocarbons in German industries: association between exogenous exposure and urinary metabolites and its modulation by enzyme polymorphisms. Toxicol. Lett. 2005; 157(3): 241-55.
  18. Salam M.T., Lin P.C., Avol E.L., Gauderman W.J., Gilliland F.D. Microsomal epoxide hydrolase, glutathione S-transferase P1, traffic and childhood asthma. Thorax. 2007; 62(12): 1050-7.
  19. Moore L.E., Baris D.R., Figueroa J.D., Garcia-Closas M., Karagas M.R., Schwenn M.R. et al. GSTM1 null and NAT2 slow acetylation genotypes, smoking intensity and bladder cancer risk: Results from the New England bladder cancer study and NAT2 meta-analysis. Carcinogenesis. 2011; 32(2): 182-9.
  20. Garcia-Closas M., Malats N., Silverman D., Dosemeci M., Kogevinas M., Hein D.W. et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: Results from the Spanish Bladder Cancer Study and metaanalyses. Lancet. 2005; 366(9486): 649-59.
  21. Pesch B., Gawrych K., Rabstein S., Weiss T., Casjens S., Rihs H.P. et al. N-acetyltransferase 2 phenotype, occupation, and bladder cancer risk: Results from the EPIC cohort. Cancer Epidemiol. Biomarkers Prev. 2013; 22(11): 2056-65.
  22. Tang D., Rundle A., Mooney L., Cho S., Schnabel F., Estabrook A. et al. Sulfotransferase 1A1 (SULT1A1) polymorphism, PAH-DNA adduct levels in breast tissue and breast cancer risk in a case-control study. Breast Cancer Res. Treat. 2003; 78(2): 217-22.
  23. Hung R.J., Boffetta P., Brennan P., Malaveille C., Hautefeuille A., Donato F. et al. GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int. J. Cancer. 2004; 110(4): 598-604.
  24. Duarte-Salles T., Mendez M.A., Morales E., Bustamante M., Rodríguez-Vicente A., Kogevinas M., Sunyer J. Dietary benzo(a)pyrene and fetal growth: effect modification by vitamin C intake and glutathione S-transferase P1 polymorphism. Environ. Int. 2012; 45: 1-8.
  25. Slama R., Gräbsch C., Lepeule J., Siroux V., Cyrys J., Sausenthaler S. et al. Maternal fine particulate matter exposure, polymorphism in xenobiotic-metabolizing genes and offspring birth weight. Reprod. Toxicol. 2010; 30(4): 600-12.
  26. Wang X., Zuckerman B., Pearson C., Kaufman G., Chen C., Wang G. et al. Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight. JAMA. 2002; 287(2): 195-202.
  27. Chen D., Hu Y., Yang F., Li Z., Wu B., Fang Z. et al. Cytochrome P450 gene polymorphisms and risk of low birth weight. Genet. Epidemiol. 2005; 28(4): 368-75.
  28. Engel S.M., Olshan A.F., Siega-Riz A.M., Savitz D.A., Chanock S.J. Polymorphisms in folate metabolizing genes and risk for spontaneous preterm and small-for-gestational age birth. Am. J. Obstet. Gynecol. 2006; 195(5): 1231. e1-11.
  29. Tiwari D., Bose P.D., Das S., Das C.R., Datta R., Bose S. MTHFR (C677T) polymorphism and PR (PROGINS) mutation as genetic factors for preterm delivery, fetal death and low birth weight: A Northeast Indian population based study. Meta Gene. 2015; 3: 31-42.
  30. Kordas K., Ettinger A.S., Lamadrid-Figueroa H., Tellez-Rojo M.M., Hérnandez-Avila M., Hu H., Wright R.O. Methylenetetrahydrofolate reductase (MTHFR) C677T, A1298C and G1793A genotypes, and the relationship between maternal folate intake, tibia lead and infant size at birth. Br. J. Nutr. 2009; 102(6): 907-14.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies