Identification of preeclampsia-related miRNA by a deep sequencing technique and a real-time quantitative PCR


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To comparatively analyze the miRNA expression profile in the placental and peripheral plasma samples from pregnant women with physiological pregnancy and preeclampsia. Material and methods. The investigators used a miRNA deep sequencing technique (HiSeq 2000, Illumina) in the placental and plasma samples from apparently healthy women and pregnant women with early and late preeclampsia and then validated the findings by a real-time quantitative PCR assay (StepOnePlus™). Results. There was a significant decrease in the expression of hsa-miR-532-5p, -423-5p, -127-3p, -376a-5p, -539-5p, and -519a-3p in the placenta and a significant increase in that of hsa-miR-423-5p and -519a-3p in the plasma of pregnant women with preeclampsia by more than twice. An association was first found between the change in the expression of the above miRNAs and the presence of preeclampsia in pregnant women, exclusive of miR-519a-3p, the changed transcriptional profile of which had been already demonstrated in preeclampsia. The application of the logistic regression model constructed using the data of the investigations showed that the risk of early preeclampsia increased with higher miR-423-5p expression levels in the plasma of pregnant women. This observation may become the basis for the testing system through screening pregnant women for the early diagnosis of preeclampsia until the disease shows its clinical manifestation. Conclusion. The found miRNAs are potentially regulators of the signaling pathways that are involved in ovarian folliculogenesis and steroidogenesis; in antigen processing and presentation; in endometrial decidualization and maintenance of early pregnancy; in graft-versus-host disease; in the development of an autoimmune disease; in cell migration and invasion, in focal adhesion and regulation of the actin cytoskeleton; in intracellular calcium transport and calcium-dependent reactions; in complement activation and blood coagulation; in aldosterone-regulated sodium reabsorption; in the renin-angiotensin system, as well as in p53- and prohibitin-mediated cellular apoptosis, which is as a whole within the general notion that these signaling pathways are implicated in the pathogenesis of preeclampsia.

Full Text

Restricted Access

About the authors

Angelica V. Timofeeva

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: avtimofeeva28@gmail.com
PhD, senior researcher at the Laboratory of Molecular Pathophysiology Department of Systems Biology in reproduction

Vladislav A. Gusar

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: v_gusar@mail.ru
Ph.D., senior researcher at the Laboratory of Molecular Pathophysiology Department of Systems Biology in reproduction

Kseniya N. Prozorovskaya

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: ksenyap@inbox.ru
obstetrician-gynecologist of observational obstetrics department

Ivan S. Balashov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: i_balashov@oparina4.ru
specialist of laboratory of bioinformatics

Natalia A. Lomova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: natasha-lomova@yandex.ru
Ph.D., researcher of observational obstetric department

Maria B. Ganichkina

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: mariaganichkina@yandex.ru
postgraduate

Elrad Yu. Amiraslanov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: e_amiraslanov@oparina4.ru
PhD, researcher of observational obstetric department

Maria V. Volochaeva

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

MD, obstetrician-gynecologist, obstetric department of physiological

Natalia V. Nizyaeva

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: niziaeva@gmail.com
PhD, senior researcher at the department of pathology

Pavel I. Borovikov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: p_borovikov@oparina4.ru
Head of the Laboratory of Bioinformatics

Vladimir E. Frankevich

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: v_frankevich@oparina4.ru
Candidate of Physical and Chemical Sciences, head of the department of systems biology in reproduction

Viktor L. Tyutyunnik

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: tioutiounnik@mail.ru
MD, head of the obstetrics department of physiological

Natalya E. Kan

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: kan-med@mail.ru
MD, head of the observational obstetrics department

Mikhail Yu. Bobrov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: mbobr@mail.ru
PhD, Head of the Laboratory of Molecular Pathophysiology, Department of Systems Biology in reproduction

Gennady T. Sukhikh

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: g_sukhikh@oparina4.ru
MD, PhD, director

References

  1. Ghulmiyyah L., Sibai B. Maternal mortality from preeclampsia/eclampsia. Semin. Perinatol. 2012; 36(1): 56-9.
  2. Roberts J.M., Pearson G., Cutler J., Lindheimer M.; NHLBI Working Group on Research on Hypertension During Pregnancy. Summary of the NHLBI Working Group on Research on Hypertension During Pregnancy. Hypertension. 2003; 41(3): 437-45.
  3. Roberts J.M., Hubel C.A. The two stage model of preeclampsia: variations on the theme. Placenta. 2009; 30 (Suppl. A): S32-7.
  4. Lunghi L., Ferretti M.E., Medici S., Biondi C., Vesce F. Control of human trophoblast function. Reprod. Biol. Endocrinol. 2007; 5: 6.
  5. Benirschke K., Kaufmann P., Baergen R. Pathology of human placenta. 5th ed. New York, NY: Springer; 2006.
  6. Moffett-King A. Natural killer cells and pregnancy. Nat. Rev. Immunol. 2002; 2(9): 656-63.
  7. Burton G.J., Woods A.W., Jauniaux E., Kingdom J.C. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009; 30(6): 473-82.
  8. Steegers E.A., von Dadelszen P., Duvekot J.J., Pijnenborg R. Pre-eclampsia. Lancet. 2010; 376(9741): 631-44.
  9. Redman C.W., Tannetta D.S., Dragovic R.A., Gardiner C., Southcombe J.H., Collett G.P., Sargent I.L. Review: Does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta. 2012; 33(Suppl.): S48-54.
  10. Gathiram P., Moodley J. Pre-eclampsia: its pathogenesis and pathophysiolgy. Cardiovasc. J. Afr. 2016; 27(2): 71-8.
  11. Wang Y., Lewis D.F., Alexander J.S., Granger D.N. Endothelial barrier function in preeclampsia. Front. Biosci. 2007; 12: 2412-24.
  12. Phipps E., Prasanna D., Brima W., Jim B. Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin. J. Am. Soc. Nephrol. 2016; 11(6): 1102-13.
  13. Enquobahrie D.A., Meller M., Rice K., Psaty B.M., Siscovick D.S., Williams M.A. Differential placental gene expression in preeclampsia. Am. J. Obstet. Gynecol. 2008; 199(5): 566. e1-11.
  14. Sitras V., Paulssen R.H., Gronaas H., Leirvik J., Hanssen T.A., Vartun A., Acharya G. Differential placental gene expression in severe preeclampsia. Placenta. 2009; 30(5): 424-33.
  15. Grosshans H., Filipowicz W. Molecular biology: the expanding world of small RNAs. Nature. 2008; 451(7177): 414-6.
  16. Gu Y., Sun J., Groome L.J., Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am. J. Physiol. Endocrinol. Metab. 2013; 304(8): E836-43.
  17. Mouillet J.F., Chu T., Sadovsky Y. Expression patterns of placental microRNAs. Birth Defects Res. Part A Clin. Mol. Teratol. 2011; 91(8): 737-43.
  18. Wang W., Feng L., Zhang H., Hachy S., Satohisa S., Laurent L.C. et al. Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J. Clin. Endocrinol. Metab. 2012; 97(6): E1051-9.
  19. Enquobahrie D.A., Abetew D.F., Sorensen T.K., Willoughby D., Chidambaram K., Williams M.A. Placental microRNA expression in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol. 2011; 204(2): 178. e12-21.
  20. Mayor-Lynn K., Toloubeydokhti T., Cruz A.C., Chegini N. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod. Sci. 2011; 18(1): 46-56.
  21. Российское общество акушеров-гинекологов. Федеральные клинические рекомендации «Гипертензивные расстройства во время беременности, в родах и послеродовом периоде. Преэклампсия. Эклампсия». М.: Российское общество акушеров-гинекологов; 2013. [The Russian Society of Obstetricians and Gynecologists. Federal clinical guidelines „Hypertensive disorders in pregnancy, during childbirth and the postpartum period. Preeclampsia. Eclampsia”. Moscow: Russian Society of Obstetricians and Gynecologists; 2013. (in Russian)]
  22. Levine R.J., Maynard S.E., Qian C., Lim K.H., England L.J., Yu K.F. et al. Circulating angiogenic factors and the fisk of preeclampsia. N. Engl. J. Med. 2004; 350(7): 672-83.
  23. Morales-Prieto D.M., Chaiwangyen W., Ospina-Prieto S., Schneider U., Herrmann J., Gruhn B., Markert U.R. MicroRNA expression profiles of trophoblastic cells. Placenta. 2012; 33(9): 725-34.
  24. Morales-Prieto D.M., Ospina-Prieto S., Chaiwangyen W., Schoenleben M., Markert U.R. Pregnancy-associated miRNA-clusters. J. Reprod. Immunol. 2013; 97(1): 51-61.
  25. Flor I., Neumann A., Freter C., Helmke B.M., Langenbuch M., Rippe V., Bullerdiek J. Abundant expression and hemimethylation of C19MC in cell cultures from placenta-derived stromal cells. Biochem. Biophys. Res. Commun. 2012; 422(3): 411-6.
  26. Kotlabova K., Doucha J., Hromadnikova I. Placental-specific microRNA in maternal circulation-identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J. Reprod. Immunol. 2011; 89(2): 185-91.
  27. Miura K., Miura S., Yamasaki K., Higashijima A., Kinoshita A., Yoshiura K., Masuzaki H. Identification of pregnancy-associated microRNAs in maternal plasma. Clin. Chem. 2010; 56(11): 1767-71.
  28. Lv Y., Gao S., Zhang Y., Wang L., Chen X., Wang Y. miRNA and target gene expression in menstrual endometria and early pregnancy decidua. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016; 197(1): 27-30.
  29. Qin J., Liang H., Shi D., Dai J., Xu Z., Chen D. et al. A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J. Thromb. Thrombolysis. 2015; 39(2): 215-21.
  30. Younger S.T., Corey D.R. Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. 2011; 39(13): 5682-91.
  31. Sui S., Jia Y., He B., Li R., Li X., Cai D. et al. Maternal low-protein diet alters ovarian expression of folliculogenic and steroidogenic genes and their regulatory MicroRNAs in neonatal piglets. Asian-Australas. J. Anim. Sci. 2014; 27(12): 1695-704.
  32. Ito M., Sferruzzi-Perri A.N., Edwards C.A., Adalsteinsson B.T., Allen S.E., Loo T.H. et al. A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development. Development. 2015; 142(14): 2425-30.
  33. Goossens K., Mestdagh P., Lefever S., Van Poucke M., Van Zeveren A., Van Soom A. et al. Regulatory microRNA network identification in bovine blastocyst development. Stem Cells Dev. 2013; 22(13): 1907-20.
  34. Zhang H., Jiang X., Zhang Y., Xu B., Hua J., Ma T. et al. microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction. 2014; 148(1): 43-54.
  35. Formosa A., Markert E.K., Lena A.M., Italiano D., Finazzi-Agro’ E., Levine A.J. et al. MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene. 2014; 33(44): 5173-82.
  36. Wang K., Long B., Zhou L.Y., Liu F., Zhou Q.Y., Liu C.Y. et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat. Commun. 2014; 5: 3596.
  37. Hromadnikova I., Kotlabova K., Ondrackova M., Pirkova P., Kestlerova A., Novotna V. et al. Expression profile of C19MC microRNAs in placental tissue in pregnancy-related complications. DNA Cell Biol. 2015; 34(6): 437-57.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies