ROLE OF THE INHERITED CHARACTERISTICS OF ENERGY METABOLISM IN THE DEVELOPMENT OF PLACENTAL INSUFFICIENCY WITH AN OUTCOME TO INTRAUTERINE GROWTH RESTRICTION


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To provide an update on the relationship between the inherited characteristics of energy metabolism and the development of placental insufficiency with an outcome to intrauterine growth restriction (IUGR). Material and methods. Available literature sources published in the databases Medline, PubMed, and others were sought. 70 sources dealing with the study of a relationship between the gene polymorphisms of energy metabolism and the development of IUGR were found; 35 of them were included in this review. Results. The concepts of the role of mitochondrial DNA, as well as the polymorphisms of nuclear steroid receptors of the peroxisome proliferator-activated receptor (PPAR) family, which are responsible for energy metabolism in the development of IUGR were outlined. The data on a mitochondrial dysfunction biomarker and chronic tissue hypoxia were given. The major subtypes of nuclear steroid receptors of the family PPAR:PPARA-α (alpha), PPAR-δ (delta) or -β (beta), PPARG-γ (gamma) and their importance in the development of the placental complex were also presented. Conclusion. Further studies of inherited risk factors may give a key to understanding the primary cause of IUGR. To identify patients with genetically determined anomalies of cellular metabolism will be able to predict placental insufficiency with an outcome to IUGR during early gestational periods. All will ultimately lead to better perinatal outcomes.

Full Text

Restricted Access

About the authors

Samat Adylbekovich Azhibekov

Email: samat1901@mail.ru
obstetrician gynecologist, postgraduate student, Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia. 620028, Russia, Yekaterinburg, Repina str. 1

Natalia Viktorovna Putilova

Email: putilova-1959@mail.ru
MD, Associate Professor, Head of antenatal protection of the fetus, Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia 620028, Russia, Yekaterinburg, Repina str. 1

Tatyana Borisovna Tretyakova

PhD, Senior Researcher, department of biochemical research methods, head of the laboratory of genetics, Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia. 620028, Russia, Yekaterinburg, Repina str. 1

Lyudmila Anatolievna Pestryaeva

PhD, head of the clinical-diagnostic department, Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia. 620028, Russia, Yekaterinburg, Repina str. 1

References

  1. Amato N.A., Maruotti G., Scillitani G., Lombardi L., Pietropaolo F. Placental insufficiency and intrauterine growth retardation. Minerva Ginecol. 2007; 59(4): 357-67.
  2. Smith-Bindman R., Chu P.W., Ecker J.L., Feldstein V.A., Filly R.A., Bacchetti P. US evaluation of fetal growth: prediction of neonatal outcomes. Radiology. 2002; 223(1)153-61. doi: 10.1148/radiol.2231010876.
  3. Савельева Г.М., ред. Плацентарная недостаточность. М.: Медицина; 1991. 276с. [Savelyeva G.M., ed. Placental insufficiency. Moscow: Medicine; 1991. 276p. (in Russian)]
  4. Милованов А.П. Патология системы мать - плацента - плод. М.: Медицина; 1999. 448с. [Milovanov A.P. Pathology system mother - placenta - fetus. Moscow: Medicine; 1999. 448p. (in Russian)]
  5. Савельева Г.М., Шалина Р.И., Курцер М.А., Клименко П.А., Сичинава Л.Г., Панина О.Б., Плеханова Е.Р., Выхристюк Ю.В., Лебедев Е.В. Акушерство и гинекология. Руководство для врачей. М.: ГЭОТАР-Медиа; 2006. [Savelyeva G.M., Shalina R.I., Kurtser M.A., Klimenko P.A., Sichinava L.G., Panina O.B., Plekhanova E.R., Vykhristyuk Yu.V., Lebedev E.V. Obstetrics and gynecology. Guidelines for doctors. Moscow: GEOTAR-Media; 2006. (in Russian)]
  6. Barker D. Adult consequences of fetal growth restriction. Clin. Obstet. Gynecol. 2006; 49(2): 270-83.
  7. Радзинский В.Е., Милованов А.П., ред. Экстраэмбриональные и околоплодные структуры при нормальной и осложненной беременности. Монография. М.: МИА; 2004. 393с. [Radzinsky V.E., Milovanov A.P., ed. Amniotic and extraembryonic structure under normal and complicated pregnancies. Monograph. Moscow: MIA; 2004. 393p. (in Russian)]
  8. Шабалов Н.П. Задержка внутриутробного роста и развития. В кн.: Шабалов Н.П. Неонатология. Учебное пособие. 5-е изд. М.: МЕДпрессинформ; 2009; т.1: 113-38. [Shabalov N.P. Intrauterine growth and development. In: Shabalov N.P. Neonatology. Tutorial. 5th ed. Moscow: MEDpress-inform; 2009; vol.1: 113-38. (in Russian)]
  9. Winick M. Fetal malnutrition. Clin. Obstet. Gynecol. 1970; 13(3): 526-41.
  10. Baschat A.A., Galan H.L., Gabbe S.G. Intrauterine growth restriction. In: Gabbe S.G., Neibyl J.R., Simpson J.L., eds. Obstetrics normal and problem pregnancies. Philadelphia: Elsevier; 2012: 706-41.
  11. Villar J., Belizan J.M. The timing factor in the pathophysiology of the intrauterine growth retardation syndrome. Obstet. Gynecol. Surv. 1982; 37(8): 499-506.
  12. Филиппов Е.С., Перфильева Н.А. Задержка внутриутробного развития плода: современные аспекты проблемы. Сибирский медицинский журнал. 2007; 2: 9-14. [Filippov E.S., Perfilieva N.A. Intrauterine growth restriction: modern aspects of the problem. Siberian Medical Journal. 2007; 2: 9-14. (in Russian)]
  13. Малевич Ю.К., Шостак В.А. Фетоплацентарная недостаточность. Минск: Беларусь; 2007. 157с. [Malevich Yu.K., Shostak V.A. Placental insufficiency. Minsk: Belarus; 2007. 157p. (in Russian)]
  14. Hendrix N., Berghella V. Non-placental causes of intrauterine growth restriction. Semin. Perinatol. 2008; 32(3): 161-5.
  15. Lattuada D., Colleoni F., Martinelli A., Garretto A., Magni R., Radaelli T., Cetin I. Higher mitochondrial DNA content in human IUGR placenta. Placenta. 2008; 29(12): 1029-33.
  16. Colleoni F., Lattuada D., Garretto A., Massari M., Mandö C., Somigliana E., Cetin I. Maternal blood mitochondrial DNA content during normal and intrauterine growth restricted (IUGR) pregnancy. Am. J. Obstet. Gynecol. 2010; 203(4): 365. e1-6.
  17. Williams M.A., Sanchez S.E., Ananth C.V., Hevner K., Qiu C., Enquobahrie D.A. Maternal blood mitochondrial DNA copy number and placental abruption risk: results from a preliminary study. Int. J. Mol. Epidemiol. Genet. 2013; 4(2): 120-7.
  18. Теппермен Дж., Теппермен Х. Физиология обмена веществ и эндокринной системы. Пер. с англ. М.: Мир; 1989. Глава 2. [Teppermen J., Teppermen H. Physiology of metabolism and the endocrine system. Trans. from English. Moscow: Mir; 1989. Chapter 2. (in Russian)]
  19. Forman B.M., Samuels H.H. Interactions among a subfamily of nuclear hormone receptors: the regulatory zipper model. Mol. Endocrinol. 1990; 4(9): l293-301.
  20. Poulsen L., Siersbaek M., Mandrup S. PPARs: fatty acid sensors controlling metabolism. Semin. Cell Dev. Biol. 2012; 23(6): 631-9.
  21. Tontonoz P., Spiegelman B.M. Fat and beyond: the diverse biology of PPARgamma. Annu. Rev. Biochem. 2008; 77: 289-312.
  22. Баранов В.С., Иващенко Т.Э., Баранова Е.В., Асеев М.В., Глотов А.С., Глотов О.С., Беспалова О.Н., Демин Г.С., Москаленко М.В., Швед Н.Ю. Генетический паспорт - основа индивидуальной и предиктивной медицины. Баранов В.С., ред. СПб.: Изд-во Н-Л; 2009. [Baranov V.S., Ivashchenko T.E., Baranova E.V., Aseev M.V., Glotov A.S., Glotov O.S., Bespalova O.N., Demin G.S., Moskalenko M.V., Shved N.Yu. The genetic passport - the basis of individual and predictive medicine. Baranov V.S., ed. St. Petersburg: Publishing house of the H-L; 2009. (in Russian)]
  23. Баранов В.С., Глотов О.С., Баранова Е.В. Геномика старения и предиктивная медицина. Успехи геронтологии. 2010; 23(3): 329-38. [Baranov V.S., Glotov O.S., Baranova E.V. Genomics of aging and predictive medicine. Uspekhi gerontologii. 2010; 23 (3): 329-38. (in Russian)]
  24. Puligheddu M., Pillolla G., Melis M., Lecca S., Marrosu F., De Montis M.G. et al. PPAR-alpha agonists as novel antiepileptic drugs: preclinical findings. PLoS One. 2013; 8(5): e64541. doi: 10.1371/journal.pone.0064541.
  25. Hegele R.A., Cao H., Harris S.B., Zinman B., Hanley A.J., Anderson C.M. Peroxisome proliferator-activated receptor-gamma2 P12A and type 2 diabetes in Canadian Oji-Cree. J. Clin. Endocrinol. Metab. 2000; 85(5): 2014-9.
  26. Asami-Miyagishi R., Iseki S., Usui M., Uchida K., Kubo H., Morita I. Expression and function of PPARgamma in rat placental development. Biochem. Biophys. Res. Commun. 2004; 315(2): 497-501. doi: 10.1016/j. bbrc.2004.01.074.
  27. Kubota N., Terauchi Y., Miki H., Tamemoto H., Yamauchi T., Komeda K. et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell. 1999; 4(4): 597-609. doi: 10.1016/S1097- 2765(00)80210-5.
  28. Nadra K., Quignodon L., Sardella C., Joye E., Mucciolo A., Chrast R., Desvergne B. PPAR gamma in placental angiogenesis. Endocrinology. 2010; 151(10): 4969-81. doi: 10.1210/en.2010-0131.
  29. Zhang S., Regnault T.R., Barker PL., Botting K.J., McMillen I.C., McMillan C.M. et al. Placental adaptations in growth restriction. Nutrients. 2015; 7(1): 360-89. doi: 10.3390/ nu7010360.
  30. Barak Y., Liao D., He W., Ong E.S., Nelson M.C., Olefsky J.M. et al. Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc. Natl. Acad. Sci. USA. 2002; 99(1): 303-8. doi: 10.1073/ pnas.012610299.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies