HAS2 gene expression in cumulus cells as a predictor of the outcome of in vitro fertilization programs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To search for molecular genetic markers to assess the quality of embryos with a high potential for implantation in order to enhance the efficiency of infertility treatment using assisted reproductive technologies. Subjects and methods. 39 patients who had undergone an in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) program were examined during a retrospective case-control study and divided into 2 groups according to the outcome of IVF/ICSI treatment: 1) 14 women with clinical pregnancy that had occurred due to this treatment; 2) 25 women without clinical pregnancy. A real-time RT-PCR assay was used to examine the cumulus cell expression level of 5 genes: hyaluronan synthase 2 (HAS2), prostaglandin synthase 2 (PTFS2), gremlin 1 (GREM1), versican (VCAN), and inositol-triphosphate 3-kinase A (ITPKA). Results. In the clinical pregnancy group, HAS2 mRNA expression was observed to increase 1.5-fold (p = 0.018). At the same time there were no statistically significant differences between the quality of transferred embryos and the rate of clinical pregnancy. Conclusion. The estimation of HAS2 expression in the cumulus cells may serve as a minimally invasive test used in clinical practice to enhance the efficiency of IVF programs as a whole.

Full Text

Restricted Access

About the authors

Natalia Aleksandrovna Safronova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: safrochik900@bk.ru
M.D., postgraduate of the department of assisted reproductive technology in infertility treatment

Elena Anatolievna Kalinina

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru
M.D, Ph.D, The Head of the department of assisted reproductive technology in infertility treatment

Andrew Evgenievich Donnikov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_donnikov@oparina4.ru
PhD, Senior Researcher of molecular-genetical laboratory

Olga Vladimirovna Burmenskaya

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: o_bourmenskaya@oparina4.ru
Ph.D., Researcher of molecular-genetical laboratory

Natalia Petrovna Makarova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: np.makarova@gmail.com
PhD, Researcher of the department of assisted reproductive technology in infertility treatment

Anastasia Valerievna Zobova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: zoana2011@gmail.com
PhD, Researcher of the department of assisted reproductive technology in infertility treatment

Kamila Ullubievna Alieva

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: k_alieva@oparina4.ru
PhD, Researcher of the department of assisted reproductive technology in infertility treatment

Victoria Konstantinovna Gorshinova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: chiasma@mail.ru
M.D., postgraduate of the department of assisted reproductive technology in infertility treatment

Dmitrii Yurievich Trofimov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: d_trofimov@oparina4.ru
Ph.D., The Head of molecular-genetical laboratory

Gennady Tikhonovich Sukhikh

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: g_sukhikh@oparina4.ru
MD, PhD, Director

References

  1. HFEA. Fertility Facts and Figures 2008. Human Fertilisation and Embryology Authority; 2010.
  2. Калинина Е.А., Донников А.Е., Владимирова И.В. Молекулярно-генетические предикторы овариального ответа, качества ооцитов и эмбрионов в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2015; 3: 21-5. [Kalinina E.A., Donnikov A.E., Vladimirova I.V. Molecular genetic predictors of ovarian response, oocyte and embryo qualities in assisted reproductive technology programs. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2015; (3): 21-5. (in Russian)]
  3. Смольникова В.Ю., Калинина Е.А., Краснощока О.Е., Донников А.Е., Бурменская О.Е., Трофимов Д.Ю., Сухих Г.Т. Возможности неинвазивной оценки состояния ооцита и эмбриона при проведении программ ВРТ по профилю экспрессии мРНК факторов роста в фолликулярной жидкости. Акушерство и гинекология. 2014; 9: 36-43. [Smolnikova V.Yu., Kalinina E.A., Krasnoshchoka O.E., Donnikov A.E., Burmenskaya O.E., Trofimov D.Yu., Sukhikh G.T. Possibilities for noninvasive oocyte and embryo evaluation when implementing assisted reproductive technology programs for follicular-fluid growth factor mRNA expression. Akusherstvo i ginekologiya/ Obstetrics and Gynecology. 2014; (9): 36-43. (in Russian)]
  4. Poli M., Ori A., Child T., Jaroudi S., Spath K., Beck M., Wells D. Characterization and quantification of proteins secreted by single human embryos prior to implantation. EMBO Mol. Med. 2015; 7(11): 1465-79.
  5. Ebner T., Moser M., Sommergruber M., Tews G. Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum. Reprod. Update. 2003; 9(3): 251-62.
  6. Bromer J.G., Seli E. Assessment of embryo viability in assisted reproductive technology: shortcomings of current approaches and the emerging role of metabolomics. Curr. Opin. Obstet. Gynecol. 2008; 20(3): 234-41.
  7. Li S.H., Lin M.H., Hwu Y.M., Lu C.H., Yeh L.Y., Chen Y.J., Lee R.K. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reprod. Biol. Endocrinol. 2015; 13(1): 93.
  8. Блашкив Т.В., Шепель А.А., Вознесенская Т.Ю. Экспрессия генов клетками кумулюсного окружения ооцита в период овуляции и оплодотворения (обзор литературы). Проблемы репродукции. 2014; 20(1): 55-8. [Blashkiv T.V., Shepel A.A., Voznesenskaya T.Yu. Gene expression of cumulus cells surrounding the oocyte during ovulation and fertilization (review). Problemyi reproduktsii. 2014; 20(1): 55-8. (in Russian)]
  9. Huang Z., Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol. Hum. Reprod. 2010; 16(10): 715-25.
  10. Gilchrist R.B., Lane M., Thompson J.G. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update. 2008; 14(2): 159-77.
  11. Kidder G.M., Vanderhyden B.C. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol. 2010; 88(4): 399-413.
  12. Binelli M., Murphy B.D. Coordinated regulation of follicle development by germ and somatic cells. Reprod. Fertil. Dev. 2010; 22(1): 1-12.
  13. Li Q, McKenzie L.J., Matzuk M.M. Revisiting oocyte-somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence. Mol. Hum. Reprod. 2008; 14(12): 673-8.
  14. Gui L.-M. RNA Interference evidence that growth differentiation factor-9 mediates oocyte regulation of cumulus expansion in mice. Biol. Reprod. 2005; 72(1): 195-9.
  15. Yokoo M., Sato E. Cumulus-oocyte complex interactions during oocyte maturation. Int. Rev. Cytol. 2004; 235: 251-91.
  16. Vanderhyden B.C., Macdonald E.A., Nagyova E., Dhawan A. Evaluation of members of the TGFbeta superfamily as candidates for the oocyte factors that control mouse cumulus expansion and steroidogenesis. Reprod. Suppl. 2003; 61: 55-70.
  17. Knight P.G., Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006; 132(2): 191-206.
  18. Burnik Papler T., Vrtacnik Bokal E., Maver A., Kopitar A.N., Lovrecic L. Transcriptomic analysis and meta-analysis of human granulosa and cumulus cells. PLoS One. 2015; 10(8): e0136473.
  19. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum. Reprod. 2011; 26(6): 1270-83.
  20. Zhang X., Jafari N., Barnes R.B., Confino E., Milad M., Kazer R.R. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil. Steril. 2005; 83(Suppl. 1): 1169-79.
  21. McKenzie L.J., Pangas S.A., Carson S.A., Kovanci E., Cisneros P., Buster J.E. et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 2004; 19(12): 2869-74.
  22. Hess K.A., Chen L., Larsen W.J. Inter-alpha-inhibitor binding to hyaluronan in the cumulus extracellular matrix is required for optimal ovulation and development of mouse oocytes. Biol. Reprod. 1999; 61(2): 436-43.
  23. Marei W.F.A., Salavati M., Fouladi-Nashta A.A. Critical role of hyaluronidase-2 during preimplantation embryo development. Mol. Hum. Reprod. 2013; 19(9): 590-9.
  24. Lesley J., Gál I., Mahoney D.J., Cordell M.R., Rugg M.S., Hyman R. et al. TSG-6 modulates the interaction between hyaluronan and cell surface CD44. J. Biol. Chem. 2004; 279(24): 25745-54.
  25. Alaniz L., Rizzo M., Garcia M.G., Piccioni F., Aquino J.B., Malvicini M. et al. Low molecular weight hyaluronan preconditioning of tumor-pulsed dendritic cells increases their migratory ability and induces immunity against murine colorectal carcinoma. Cancer Immunol. Immunother. 2011; 60(10): 1383-95.
  26. Kimura N. Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation. Biol. Reprod. 2002; 66(3): 707-17.
  27. Anderson R.A., Sciorio R., Kinnell H., Bayne R.A., Thong K.J., de Sousa P.A., Pickering S. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction. 2009; 138(4): 629-37.
  28. Pangas S.A., Jorgez C.J., Matzuk M.M. Growth differentiation factor 9 regulates expression of the bone morphogenetic protein antagonist gremlin. J. Biol. Chem. 2004; 279(31): 32281-6.
  29. Wathlet S., Adriaenssens T., Segers I., Verheyen G., Van de Velde H., Coucke W. et al. Cumulus cell gene expression predicts better cleavage-stage embryo or blastocyst development and pregnancy for ICSI patients. Hum. Reprod. 2011; 26(5): 1035-51.
  30. Sathyan S., Koshy L.V., Balan S., Easwer H.V., Premkumar S., Nair S. et al. Association of Versican (VCAN) gene polymorphisms rs251124 and rs2287926 (G428D), with intracranial aneurysm. Meta Gene. 2014; 2: 651-60.
  31. LaPierre D.P., Lee D.Y., Li S.Z., Xie Y.Z., Zhong L., Sheng W. et al. The ability of versican to simultaneously cause apoptotic resistance and sensitivity. Cancer Res. 2007; 67(10): 4742-50.
  32. Gebhardt K.M., Feil D.K., Dunning K.R., Lane M., Russell D.L. Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertil. Steril. 2011; 96(1): 47-52. e2.
  33. Wathlet S., Adriaenssens T., Segers I., Verheyen G., Janssens R., Coucke W. et al. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertil. Steril. 2012; 98(2): 432-9. e1-4.
  34. Prevarskaya N., Skryma R., Shuba Y. Calcium in tumour metastasis: new roles for known actors. Nat. Rev. Cancer. 2011; 11(8): 609-18.
  35. Burnik Papler T., Vrtacnik Bokal E., Lovrecic L., Kopitar A.N., Maver A. No specific gene expression signature in human granulosa and cumulus cells for prediction of oocyte fertilisation and embryo implantation. PLoS One. 2015; 10(3): e0115865.
  36. Burnik Papler T., Vrtacnik Bokal E., Maver A., Lovrecic L. Specific gene expression differences in cumulus cells as potential biomarkers of pregnancy. Reprod. Biomed. Online. 2015; 30(4): 426-33.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies