Indicators of mitochondrial functioning in adolescent girls with polycystic ovary syndrome with regard to the presence of metabolic disorders and overweight


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

There is a growing body of evidence supporting the significant role of systemic inflammation and oxidative stress in the genesis of polycystic ovary syndrome (PCOS) in adult patients. The indicators of mitochondrial functioning early in the development of PCOS in adolescence remain little studied. Objective. To study the characteristics of mitochondrial function and systemic inflammation in adolescent girls with different metabolic PCOS phenotypes compared with healthy girls. Subjects and methods. The investigation enrolled 95 girls aged 15 to 17 years inclusive with PCOS according to the Rotterdam criteria. A control group consisted of 30 healthy age-matched regularly cycling girls. All the participants underwent a complete clinical and instrumental examination and estimation of the levels of C-reactive protein, malondialdehyde (MDA), the mitochondrial membrane potential of peripheral blood mononuclear cells (MNC) and MNC fractions with highly polarized mitochondria. The level of glutathione, the ratio of its oxidized (GSSH) to reduced (GSH) forms (GSSR/GSH), and the enzymatic activity of catalase, glutathione reductase and glutathione peroxidase were determined. Results. As compared with the healthy girls, the normal weight patients with PCOS in the absence of metabolic abnormalities (PCOS-MANW) had a lower concentration of MDA, decreased activity of the antioxidant enzyme glutathione reductase, a higher level of the reduced form of the antioxidant glutathione and its ratio to the oxidized form, and a higher percentage of MNCs with highly polarized mitochondria (p <0.05 for all indicators). The patients with PCOS-MANW showed lower C-reactive protein (CRP) and MDA levels than those with PCOS-MA_OW) (p < 0.05). The girls with PCOS-MA_OW) had higher levels of CRP and enhanced glutathione reductase and MDA activities than those with PCOS-MANW (p < 0.05). Comparison of the girls PCOS+MAOW) and those with PCOS+MANWrevealed significant increases in the levels of CRP and MDA and the activity of glutathione reductase (p < 0.05). The girls with PCOS-MAOWhad a higher MDA level than those with PCOS+MANW(p < 0.05). As compared with the healthy girls, the PCOS+MANWgroup had a lower level of MDA, an elevated concentration of reduced glutathione, and lower activity of glutathione reductase (p < 0.05). The found characteristics are confirmed by a correlation analysis and by the results of two-factor analysis of variance. Conclusion. An adaptive mechanism for reducing the manifestations of oxidative stress and systemic inflammation with the high coupling of mitochondrial respiration and the level of antioxidant protection is realized in the normal weight adolescents with PCOS. The manifestations of oxidative stress, which are mediated by mitochondrial uncoupling due to impaired cholesterol and glucose metabolism, are pronounced, which is enhanced by the addition of carbohydrate metabolic disturbances in the overweight adolescents with PCOS. Mitochondrial dysfunction is associated with the activation of systemic inflammatory response in the overweight adolescents with PCOS in the presence of insulin resistance.

Full Text

Restricted Access

About the authors

Elena Petrovna Khashchenko

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: khashchenko_elena@mail.ru
gynecologist at the Department of Pediatric Gynecology

Yuliia A. Sukhanova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: suhanova_julia@hotmail.com
research fellow at mitochondrial medicine research group

Sofia V. Pyataeva

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: biosonya@gmail.com
PhD, researcher at mitochondrial medicine research group

Maria A. Volodina

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: m_volodina@oparina4.ru
PhD, researcher at mitochondrial medicine research group

Nadejda V. Tarasova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: n_tarasova@oparina4.ru
PhD, researcher at mitochondrial medicine research group

Darya V. Tsvirkun

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: darunyat@gmail.com
PhD, researcher at mitochondrial medicine research group

Elena V. Uvarova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: elena-uvarova@yandex.ru
MD PhD, Professor, Head of the Department of Pediatric Gynecology

Mikhail Yu. Vysokikh

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia; A.N. Belozersky Research Institute of Physicochemical Biology

Email: m_vysokikh@oparina4.ru
PhD, the head of mitochondrial medicine research group; Head of aging molecular mechanism group

References

  1. El Hayek S., Bitar L., Hamdar L.H., Mirza F.G., Daoud G. Poly cystic ovarian syndrome: an updated overview. Front. Physiol. 2016; 7: 124. Published online 2016; Apr 5. doi: 10.3389/fphys.2016.00124.
  2. Rojas J., Chavez M., Olivar L., Rojas M., Morillo J., Mejias J. et al. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. Int. J. Reprod. Med. 2014; 2014: 719050. doi: 10.1155/2014/719050.
  3. Sousa S.M., Norman R.J. Metabolic syndrome, diet and exercise. Best Pract. Res. Clin. Obstet. Gynaecol. 2016; 37: 140-51. doi: 10.1016/j.bpobgyn.2016.01.006.
  4. Чернуха Г.Е., Блинова И.В., Купрашвили М.И. Эндокринно-метаболические характеристики больных с различными фенотипами синдрома поликистозных яичников. Акушерство и гинекология. 2011; 2: 70-6. [Chernukha G.Ye., Blinova I.V., Kuprashvili M.I. Endocrine and metabolic characteristics of patients with different phenotypes of polycystic ovary syndrome. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2011; (2): 70-6. (in Russian)]
  5. Goodman N.F., Cobin R.H., Futterweit W., Glueck J.S., Legro R.S., Carmina E. American association of clinical endocrinologists, american college of endocrinology, and androgen excess and pcos society disease state clinical review: guide to the best practices in the evaluation and treatment of polycystic ovary syndromepart 1. Endocr. Pract. 2015; 21(11): 1291-300. doi: 10.4158/EP15748.DSC.
  6. Turan V., Sezer E.D., Zeybek B., Sendag F. Infertility and the presence of insulin resistance are associated with increased oxidative stress in young, non-obese Turkish women with polycystic ovary syndrome. J. Pediatr. Adolesc. Gynecol. 2015; 28(2): 119-23. doi: 10.1016/j.jpag.2014.05.003.
  7. Murri M., Luque-Ramirez M., Insenser M., Ojeda-Ojeda M., Escobar-Morreale H.F. irculating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systemic review and meta-analysis. Hum. Reprod. Update. 2013; 19(3): 268-88. doi: 10.1093/humupd/dms059.
  8. Zuo T., Zhu M., Xu W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid. Med. Cell. Longev. 2016; 2016: 8589318. doi: 10.1155/2016/8589318.
  9. Tao T., Li S., Zhao A., Zhang Y., Liu W. Expression of the CD11c gene in subcutaneous adipose tissue is associated with cytokine level and insulin resistance in women with polycystic ovary syndrome. Eur. J. Endocrinol. 2012; 167(5): 705-13. doi: 10.1530/EJE-12-0340.
  10. Repaci A., Gambineri A., Pasquali R. The role of low-grade inflammation in the polycystic ovaiy syndrome. Mol. Cell. Endocrinol. 2011; 335(1): 30-41. doi: 10.1016/j.mce.2010.08.002.
  11. Sathyapalan T., Atkin S.L. Mediatora of inflammation in polycystic ova^ syndrome in relation to adiposity. Mediatora Inflamm. 2010; 2010: 758656. doi: 10.1155/2010/758656.
  12. Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014; 94(3): 909-50. doi: 10.1152/physrev.00026.2013.
  13. Amato M.C., Guarnotta V., Forti D., Donatelli M., Dolcimascolo S., Giordano C. Metabolically healthy polycystic ova^ syndrome (MH-PCOS) and metabolically unhealthy polycystic ova^ syndrome (MU-PCOS): a comparative analysis of forn simple methods usefUl for metabolic assessment. Hum. Reprod. 2013; 28(7): 1919-28. doi: 10.1093/humrep/det105.
  14. Jentzsch A.M., Bachmann H., Fürst P., Biesalski H.K. Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med. 1996; 20(2): 251-6.
  15. Giustarini G., Dalle-Donne I., Milzani A., Fanti P., Rossi R. Analysis of GSH and GSSG afte derivatization with N-ethylmaleimide. Nat. Protoc. 2013; 8(9): 1660-9. doi: 10.1038/nprat.2013.095.
  16. Escobar-Morreale H.F., Luque-Ramirez M., González F. Circulating inflammato-гу matera in polycystic ova^ syndrome: a systematic review and meta-analysis. Fertil Steril. 2011; 95(3): 1048-58. doi: 10.1016/j.fertnstert.2010.11.036.
  17. Lee H., Oh J.Y., Sung Y.A. Adipokines, insulin-like growth facto! binding protein-3 levels, and insulin sensitivity in women with polycystic ova^ syndrome. Korean J. Intem. Med. 2013; 28(4): 456-63. doi: 10.3904/kjim.2013.28.4.456.
  18. Мадянов И.В., Мадянова Т.С. Синдром поликистозных яичников у девочек-подростков: клинико-метаболические особенности и перспективы применения метформина. Практическая медицина. 2010; 43(4): 86-9. [Madyanov I.V., Madyanova T.S. Polycystic ova^ syndrome in adolescent giris: clinical and metabolic characteristics and prospects of metformin. Prakticheskaya meditsina/Practical Medicine. 2010; 43(4): 86-9. (in Russian)]
  19. Fujii J., Iuchi Y., Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod. Biol. Endocrinol. 2005; 3: 43.
  20. Prasad S., Tiwari M., Pandey A.N., Shrivastav T.G., Chaube S.K. Impact of stress on oocyte quality and reproductive outcome. J. Biomed. Sci. 2016; 23: 36. doi: 10.1186/s12929-016-0253-4.
  21. Gupta S., Ghulmiyyah J., Sharma R., Halabi J., Agarwal A. Power of proteomics in linking oxidative stress and female infertility. Biomed. Res. Int. 2014; 2014: 916212. doi: 10.1155/2014/916212.
  22. Martínez-Reyes I., Diebold L.P., Kong H., Schieber M., Huang H., Hensley C.T. et al. TCA cycle and mitochondrial membrane potential are necessa^ for diverae biological functions. Mol. Cell. 2016; 61(2): 199-209. doi: 10.1016/j. molcel.2015.12.002.
  23. Kim J., Wei Y., Sowers J.R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 2008; 102(4): 401-14. doi: 10.1161/ CIRCRESAHA.107.165472.
  24. Wenceslau C.F., McCarthy C.G., Szasz T., Spitler K., Goulopoulou S., Webb R.C.; Wooing Group on DAMPs in Cardiovascular Disease. Mitochondrial damage-associated molecular patterns and vascular function. Eun Heart J. 2014; 35(18): 1172-7. doi: 10.1093/eurheartj/ehu047.
  25. Gonzdlez F. Nutrient-induced inflammation in polycystic ovary syndrome: role in the development of metabolic abereation and ovarian dysfunction. Semin. Reprod. Med. 2015; 33(4): 276-86. doi: 10.1055/ s-0035-1554918.
  26. Boden G. Obesity, insulin resistance and free fatty acids. Cure. Opin. Endocrinol. Diabetes Obes. 2011; 18(2): 139-43.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies