Metabolites of the normal vaginal microflora increase the activity of antibiotics


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. Investigation of the influence of metabolites from the lactobacilli isolated from healthy women and LCR35probiotic strain on sensitivity to antibiotics. Subject and methods. We studied the effects of H2O2, lactate, and surfactants obtained from 24 vaginal Lactobacillus spp. and metabolites from L CR35 on sensitivity to antibiotics of 172 strains of opportunistic bacteria. Results. H2O2 and surfactants but no lactic acid were more effective for increasing the sensitivity of bacteria to antibiotics. Strain LCR35 increased sensitivity to antibiotics of all test strains, to a greater extent - G. vaginalis, E. coli and Klebsiella spp. Conclusion. The phenomenon of potentiation of activity of antibiotic by metabolites from vaginal lactobacilli and LCR35 probiotic strain was detected. For effective treatment of inflammatory diseases by antibiotics should take into account the status of the normal microflora, and if necessary, compensate deficit by probiotic strains able to produce “assistants antibiotics”.

Full Text

Restricted Access

About the authors

Andrey Viktorovich Sgibnev

Institute of Cellular and Intracellular Symbiosis, Ural Branch of RAS

Email: andrej-sgibnev@yandex.ru
doctor of biology, associate professor, leading researcher, Laboratory for the study of the mechanisms of formation microbiocenoses of humans

Elena Aleksandrovna Kremleva

Institute of Cellular and Intracellular Symbiosis, Ural Branch of RAS; Orenburg State Medical University

Email: kremlena1@mail.ru
MD, leading researcher, Laboratory for the study of the mechanisms of formation microbiocenoses of humans; Associate Professor, Department of Obstetrics and Gynecology

References

  1. Women and health: today’s evidence, tomorrow’s agenda. Geneva: World Health Organization; 2009. Available at: http://apps.who.int/iris/bitstre am/10665/44168/1/9789241563857_eng.pd
  2. Додова Е.Г., Аполихина И.А., Горбунова Е.А., Бородина Е.А. Комплексное лечение воспалительных заболеваний нижних отделов генитального тракта у женщин. Акушерство и гинекология. 2015; 6: 129-35. [Kurchakova T.A., Veresova A.A., Tyutyunnik V.L., Kan N.E. Current approaches to treating papillomavirus infection. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2015; (6): 129-35. (in Russian)]
  3. Levy S.B., Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 2004; 10(12, Suppl.): S122-9.
  4. Bancroft E.A. Antimicrobial resistance: it’s not just for hospitals. JAMA. 2007; 298(15):1803-4.
  5. Roca I., Akova M., Baquero F., Carlet J., Cavaleri M., Coenen S. et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015; 6: 22-9.
  6. Worthington R.J., Melander C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013; 31(3):177-84.
  7. Viens A.M., Littmann J. Is Antimicrobial resistance a slowly emerging disaster? Public Health Ethics. 2015; 8(3): 255-65.
  8. Mandal S.M., Roy A., Ghosh A.K., Hazra T.K., Basak A., Franco O.L. Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front. Pharmacol. 2014; 5: 105.
  9. Mishra R.K., Segal E., Lipovsky A., Natan M., Banin E., Gedanken A. New life for an old antibiotic. ACS Appl. Mater. Interfaces. 2015; 7(13): 7324-33.
  10. Macklaim J.M., Clemente J.C., Knight R., Gloor G.B., Reid G. Changes in vaginal microbiota following antimicrobial and probiotic therapy. Microb. Ecol. Health Dis. 2015; 26: 27799.
  11. Bodean O., Munteanu O., Cirstoiu C., Secara D., Cirstoiu M. Probiotics - a helpful additional therapy for bacterial vaginosis. J. Med. Life. 2013; 6(4): 434-6.
  12. Sgibnev A., Kremleva E. Vaginal protection by H2O2-producing lactobacilli. Jundishapur J. Microbiol. 2015; 8(10): e22913.
  13. Aldunate M., Srbinovski D., Hearps A.C., Latham C.F., Ramsland P.A., Gugasyan R. et al. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front. Physiol. 2015; 6: 164.
  14. O’Hanlon D.E., Moench T.R., Cone R.A. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PloS One. 2013; 8(11): e80074.
  15. Sambanthamoorthy K., Feng X., Patel R., Patel S., Paranavitana C. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiology. 2014; 14: 197.
  16. Shokouhfard M., Kermanshahi R.K., Shahandashti R.V., Feizabadi M.M., Teimourian S. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens. Iran. J. Basic Med. Sci. 2015; 18(10): 1001-7.
  17. Whitman W.B., Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M.E., Ludwig W. Bergey’s manual of systematic bacteriology. 2nd ed. vol. 5(Pt A and B). New York: Springer-Verlag; 2012.
  18. Willumsen P.A., Karlson U. Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation. 1997; 7(5): 415-23.
  19. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : approved standard. 10th ed. CLSI document M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.
  20. Савичева А.М., Рыбина Е.В. Исследование in vitro роста, размножения, антибиотикорезистентности, конкурентных взаимоотношений штамма Lactobacillus casei rhamnosus. Акушерство и гинекология. 2014; 7: 79-83. [Savicheva A.M., Rybina E.V. In vitro study of the growth, reproduction, antibiotic resistance, and competitive relationships of a Lactobacillus casei rhamnosus strain. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2014; (7): 79-83. (in Russian)]
  21. Borges S., Silva J., Teixeira P. The role of lactobacilli and probiotics in maintaining vaginal health. Arch. Gynecol. Obstet. 2014; 289(3): 479-89.
  22. Dover S.E., Aroutcheva A.A., Faro S., Chikindas M.L. Natural antimicrobials and their role in vaginal health: a short review. Int. J. Probiotics Prebiotics. 2008; 3(4): 219-30.
  23. Albesa I., Becerra M.C., Battán P.C., Páez P.L. Oxidative stress involved in the antibacterial action of different antibiotics. Biochem. Biophys. Res. Commun. 2004; 317(2): 605-9.
  24. Dwyer D.J., Belenky P.A., Yang J.H., MacDonald I.C., Martell J.D., Takahashi N. et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA. 2014; 111(20): E2100-9.
  25. Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007; 130(5): 797-810.
  26. Grant S.S., Hung D.T. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013; 4(4): 273-83.
  27. Bernier S.P., Létoffé S., Delepierre M., Ghigo J.M. Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol. Microbiol. 2011; 81(3): 705-16.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies