Current embryo selection techniques in the implementation of assisted reproductive technology programs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To carry out a systematic analysis of the data available in the world literature on current methods for screening and selection of embryos to enhance the efficiency of assisted reproductive technology (ART) programs in a group of late reproductive age women. Material and methods. The review includes the data of Russian and foreign articles found in Pubmed on this topic. General provisions. There are recent trends towards late marriage and late childbearing. With increasing age, reproductive function realization is known to have a number of problems. First, women older than 35 years have diminished ovarian reserve. After 40 years, the rate of follicular atresia doubles. Second, this group of women has frequently a family history of gynecological problems. Third, patients older than 35 years of age even with intact ovarian reserve are at increased risk for the aneuploidy of oocytes and, as a consequence, embryos, which also reduces the chance of getting pregnant. Accordingly, the assessment of embryo quality is a key component of success in ART programs. Existing methods for selection of embryos are based on their detailed morphological and genetic evaluation using preimplantation genetic screening (PGS). However, even the use of PGS does not improve the efficiency of ART programs above 50%. Therefore, there is a need for additional methods to identify viable embryos. In this connection, great importance has been recently attached to the mitochondrial potential of gametes and embryos. Results. The paper comparatively characterizes main PGS techniques (array-based comparative genomic hybridization (aCGH) and high-throughput sequencing (next generation sequencing (NGS)), considers the advantages of NGS, and describes the new potential marker for the quality of oocytes and embryos, the level of mitochondrial DNA (mtDNA), which can improve the outcomes of ART programs in the group of female patients of late reproductive age. Conclusion. In the near future, it seems likely that NGS will be put into wide practical use due to its advantages. In addition, the world literature contains data that a study of the mitochondrial potential of oocytes and embryos may become an additional reliable predictor for the outcomes of ART programs in different groups of patients, including in the group of late reproductive age patients.

Full Text

Restricted Access

About the authors

A. I Korolkova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: zaikinaai@icloud.com
graduate student of 1st gynecology department

N. G Mishieva

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: nondoc555@mail.ru
MD, Senior researcher of 1st gynecology department

O. V Burmenskaya

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: o_bourmenskaya@oparina4.ru
MD, Researcher of Molecular-genetic Laboratory

A. N Ekimov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_ekimov@oparina4.ru
MD, Laboratory of Molecular Genetic Techniques

A. N Abubakirov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: nondoc555@yahoo.com
PhD, Head of 1st gynecology department

Kh. A Bogatyreva

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: bogatyreva-khava@bk.ru
postgraduate of 1st gynecology department

References

  1. Munné S., Sandalinas M., Magli C., Gianaroli L., Cohen J., Warburton D. Increased rate of aneuploid embryos in young women with previous aneuploid conceptions. Prenat. Diagn. 2004; 24(8): 638-43.
  2. Franasiak J.M., Forman E.J., Hong K.H., Werner M.D., Upham K.M., Treff N.R., Scott R.T. Jr. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 2014; 101(3): 656-63. e1.
  3. Gersen S.L. The principles of clinical cytogenetics. New York: Springer; 2013: 275-92.
  4. Ghevaria H., Mamas T., Sabhnani T., Sarna U., Serhal P., Delhanty J.D.A. O-119 Non-reciprocal errors and germinal mosaicism detected by the application of array-CGH to oocytes and polar bodies unexposed to sperm. Hum. Reprod. 2013; 28(Suppl. 1: Abstracts of the 29th Annual Meeting of the European Society of Human Reproduction and Embryology. London, United Kingdom. July 7-10, 2013.): i49-i51.
  5. Баранов В.С., Кузнецова Т.В. Цитогенетика эмбрионального развития человека. СПб.: Н-Л; 2007: 78-9.
  6. Fiorentino F., Bono S., Biricik A., Nuccitelli A., Cotroneo E., Cottone G. et al. Application of next-generation sequencing technology for comprehensive aneu-ploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum. Reprod. 2014; 29(12): 2802-13.
  7. Fragouli E., Wells D. Aneuploidy in the human blastocyst. Cytogenet. Genome Res. 2011; 133(2-4): 149-59.
  8. Cagnone G.L., Tsai T.S., Makanji Y., Matthews P., Gould J., Bonkowski M.S. et al. Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Sci. Rep. 2016; 6: 23229.
  9. Мишиева Н.Г., Назаренко Т.А. Бесплодие и возраст: пути решения проблемы. 2-е изд. М.: МЕДпресс-информ; 2014. 216с.
  10. Chawanpaiboon S., Titapant V. The possible primary causes of human aneuploidy. Thai J. Obstet. Gynaecol. 2000; 12(2): 93-102.
  11. Боярский К.Ю., Гайдуков С.Н., Леонченко В.В. Причины прерывания беременности после ЭКО и ИКСИ: анализ клинических и цитогенетических данных. Журнал акушерства и женских болезней. 2008; 57(4): 73-5.
  12. Юренева С.В., Ильина Л.М., Сметник В.П. Старение репродуктивной системы женщин: от теории к клинической практике. Часть I. Эндокринные и клинические характеристики стадий репродуктивного старения женщин. Акушерство и гинекология. 2014; 3: 21-7.
  13. Henderson S., Edwards R. Chiasma frequency and maternal age in mammals. Nature. 1968; 218(5136): 22-8.
  14. Wu Y., Zhang N., Li Y.H., Zhao L., Yang M., Jin Y. et al. Citrinin exposure affects oocyte maturation and embryo development by inducing oxidative stressmediated apoptosis. Oncotarget. 2017; 8(21): 34525-33.
  15. Ogino M., Tsubamoto H., Sakata K., Oohama N., Hayakawa H., Kojima T. et al. Mitochondrial DNA copy number in cumulus cells is a strong predictor of obtaining good-quality embryos after IVF. J. Assist. Reprod. Genet. 2016; 33(3): 367-71.
  16. Tsutsumi M., Fujiwara R., Nishizawa H., Ito M., Kogo H., Inagaki H. et al. Agerelated decrease of meiotic cohesins in human oocytes. PLoS One. 2014; 9(5): e96710.
  17. Lukaszuk K., Jakiel G., Kuczynski W., Pukszta S., Liss J., Plociennik L. et al. Next generation sequencing for preimplantation genetic testing of blastocysts aneuploidies in women of different ages. Ann. Agric. Environ. Med. 2016; 23(1): 163-6.
  18. Ma G.C., Chen H.F., Yang Y.S., Lin W.H., Tsai F.P., Lin C.F. et al. A pilot proof-of-principle study to compare fresh and vitrified cycle preimplantation genetic screening by chromosome microarray and next generation sequencing. Mol. Cytogenet. 2016; 9: 25.
  19. Brezina P.R., Anchan R., Kearns W.G. Preimplantation genetic testing for aneuploidy: what technology should you use and what are the differences? J. Assist. Reprod. Genet. 2016; 33(7): 823-32.
  20. Yang Z., Lin J., Zhang J., Fong W.I., Li P., Zhao R. et al. Randomized comparison of next-generation sequencing and array comparative genomic hybridization for preimplantation genetic screening: a pilot study. BMC Med. Genomics. 2015; 8: 30.
  21. Lukaszuk K., Pukszta S., Wells D., Cybulska C., Liss J., Plociennik L. et al. Routine use of next-generation sequencing for preimplantation genetic diagnosis of blastomeres obtained from embryos on day 3 in fresh in vitro fertilization cycles. Fertil. Steril. 2015; 103(4): 1031-6.
  22. Huang J., Yan L., Lu S., Zhao N., Xie X.S., Qiao J. Validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of blastocysts. Fertil. Steril. 2016; 105(6): 1532-6.
  23. Liss J., Chromik I., Szczyglinska J., Jagiello M., Lukaszuk A., Lukaszuk K. Current methods for preimplantation genetic diagnosis. Ginekol. Pol. 2016; 87(7): 522-6.
  24. Yang Z., Liu J., Collins G.S., Salem S.A., Liu X., Lyle S.S. et al. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol. Cytogenet. 2013; 5: 24.
  25. Youle R.J., Van der Bliek A.M. Mitochondrial fission, fusion, and stress. Science. 2012; 337(6098): 1062-5.
  26. Fragouli E., Spath K., Alfarawati S., Kaper F., Craig A., Michel C.E. et al. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 2015; 11(6): e1005241.
  27. Boucret L., Chao de la Barca J.M., Morinière C., Desquiret V., Ferré-L’Hôtellier V., Descamps P. et al. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum. Reprod. 2015; 30(7): 1653-64.
  28. Turner N., Robker R. Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role? Mol. Hum. Reprod. 2015; 21(1): 23-30.
  29. Скулачев В., Богачев А., Каспаринский Ф. Мембранная биоэнергетика. М.: Издательство МГУ; 2010. 367c.
  30. Grindler N.M., Moley K.H. Maternal obesity, infertility and mitochondrial dysfunction: potential mechanisms emerging from mouse model systems. Mol. Hum. Reprod. 2013; 19(8): 486-94.
  31. El Shourbagy S.H., Spikings E.C., Freitas M., St John J.C. Mitochondria directly influence fertilisation outcome in the pig. Reproduction. 2006; 131(2): 233-45.
  32. Simsek-Duran F., Li F., Ford W., Swanson R.J., Jones H.W. Jr., Castora F.J. Age-associated metabolic and morphologic changes in mitochondria of individual mouse and hamster oocytes. PLoS One. 2013; 8: e64955.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies